Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 May 1;129(3):697–708. doi: 10.1083/jcb.129.3.697

Forced expression of chimeric human fibroblast tropomyosin mutants affects cytokinesis

PMCID: PMC2120436  PMID: 7730405

Abstract

Human fibroblasts generate at least eight tropomyosin (TM) isoforms (hTM1, hTM2, hTM3, hTM4, hTM5, hTM5a, hTM5b, and hTMsm alpha) from four distinct genes, and we have previously demonstrated that bacterially produced chimera hTM5/3 exhibits an unusually high affinity for actin filaments and a loss of the salt dependence typical for TM-actin binding (Novy, R.E., J. R. Sellers, L.-F. Liu, and J.J.-C. Lin, 1993. Cell Motil. & Cytoskeleton. 26: 248-261). To examine the functional consequences of expressing this mutant TM isoform in vivo, we have transfected CHO cells with the full-length cDNA for hTM5/3 and compared them to cells transfected with hTM3 and hTM5. Immunofluorescence microscopy reveals that stably transfected CHO cells incorporate force- expressed hTM3 and hTM5 into stress fibers with no significant effect on general cell morphology, microfilament organization or cytokinesis. In stable lines expressing hTM5/3, however, cell division is slow and sometimes incomplete. The doubling time and the incidence of multinucleate cells in the stable hTM5/3 lines roughly parallel expression levels. A closely related chimeric isoform hTM5/2, which differs only in the internal, alternatively spliced exon also produces defects in cytokinesis, suggesting that normal TM function may involve coordination between the amino and carboxy terminal regions. This coordination may be prevented in the chimeric mutants. As bacterially produced hTM5/3 and hTM5/2 can displace hTM3 and hTM5 from actin filaments in vitro, it is likely that CHO-expressed hTM5/3 and hTM5/2 can displace endogenous TMs to act dominantly in vivo. These results support a role for nonmuscle TM isoforms in the fine tuning of microfilament organization during cytokinesis. Additionally, we find that overexpression of TM does not stabilize endogenous microfilaments, rather, the hTM-expressing cells are actually more sensitive to cytochalasin B. This suggests that regulation of microfilament integrity in vivo requires stabilizing factors other than, or in addition to, TM.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balasubramanian M. K., Helfman D. M., Hemmingsen S. M. A new tropomyosin essential for cytokinesis in the fission yeast S. pombe. Nature. 1992 Nov 5;360(6399):84–87. doi: 10.1038/360084a0. [DOI] [PubMed] [Google Scholar]
  2. Balasubramanian M. K., Hirani B. R., Burke J. D., Gould K. L. The Schizosaccharomyces pombe cdc3+ gene encodes a profilin essential for cytokinesis. J Cell Biol. 1994 Jun;125(6):1289–1301. doi: 10.1083/jcb.125.6.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartegi A., Ferraz C., Fattoum A., Sri Widada J., Heitz F., Kassab R., Liautard J. P. Construction, expression and unexpected regulatory properties of a tropomyosin mutant with a 31-residue deletion at the C-terminus (exon 9). Eur J Biochem. 1990 Dec 27;194(3):845–852. doi: 10.1111/j.1432-1033.1990.tb19478.x. [DOI] [PubMed] [Google Scholar]
  4. Bonder E. M., Mooseker M. S. Direct electron microscopic visualization of barbed end capping and filament cutting by intestinal microvillar 95-kdalton protein (villin): a new actin assembly assay using the Limulus acrosomal process. J Cell Biol. 1983 Apr;96(4):1097–1107. doi: 10.1083/jcb.96.4.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradac J. A., Gruber C. E., Forry-Schaudies S., Hughes S. H. Isolation and characterization of related cDNA clones encoding skeletal muscle beta-tropomyosin and a low-molecular-weight nonmuscle tropomyosin isoform. Mol Cell Biol. 1989 Jan;9(1):185–192. doi: 10.1128/mcb.9.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Broschat K. O., Burgess D. R. Low Mr tropomyosin isoforms from chicken brain and intestinal epithelium have distinct actin-binding properties. J Biol Chem. 1986 Oct 5;261(28):13350–13359. [PubMed] [Google Scholar]
  7. Broschat K. O., Weber A., Burgess D. R. Tropomyosin stabilizes the pointed end of actin filaments by slowing depolymerization. Biochemistry. 1989 Oct 17;28(21):8501–8506. doi: 10.1021/bi00447a035. [DOI] [PubMed] [Google Scholar]
  8. Burgess D. R., Broschat K. O., Hayden J. M. Tropomyosin distinguishes between the two actin-binding sites of villin and affects actin-binding properties of other brush border proteins. J Cell Biol. 1987 Jan;104(1):29–40. doi: 10.1083/jcb.104.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cao L. G., Wang Y. L. Mechanism of the formation of contractile ring in dividing cultured animal cells. I. Recruitment of preexisting actin filaments into the cleavage furrow. J Cell Biol. 1990 Apr;110(4):1089–1095. doi: 10.1083/jcb.110.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cao L. G., Wang Y. L. Mechanism of the formation of contractile ring in dividing cultured animal cells. II. Cortical movement of microinjected actin filaments. J Cell Biol. 1990 Nov;111(5 Pt 1):1905–1911. doi: 10.1083/jcb.111.5.1905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cho Y. J., Hitchcock-DeGregori S. E. Relationship between alternatively spliced exons and functional domains in tropomyosin. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10153–10157. doi: 10.1073/pnas.88.22.10153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cho Y. J., Liu J., Hitchcock-DeGregori S. E. The amino terminus of muscle tropomyosin is a major determinant for function. J Biol Chem. 1990 Jan 5;265(1):538–545. [PubMed] [Google Scholar]
  13. Cooper H. L., Feuerstein N., Noda M., Bassin R. H. Suppression of tropomyosin synthesis, a common biochemical feature of oncogenesis by structurally diverse retroviral oncogenes. Mol Cell Biol. 1985 May;5(5):972–983. doi: 10.1128/mcb.5.5.972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cooper J. A. Effects of cytochalasin and phalloidin on actin. J Cell Biol. 1987 Oct;105(4):1473–1478. doi: 10.1083/jcb.105.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Eaton B. L., Kominz D. R., Eisenberg E. Correlation between the inhibition of the acto-heavy meromyosin ATPase and the binding of tropomyosin to F-actin: effects of Mg2+, KCl, troponin I, and troponin C. Biochemistry. 1975 Jun 17;14(12):2718–2725. doi: 10.1021/bi00683a025. [DOI] [PubMed] [Google Scholar]
  16. Fattoum A., Hartwig J. H., Stossel T. P. Isolation and some structural and functional properties of macrophage tropomyosin. Biochemistry. 1983 Mar 1;22(5):1187–1193. doi: 10.1021/bi00274a031. [DOI] [PubMed] [Google Scholar]
  17. Fishkind D. J., Wang Y. L. Orientation and three-dimensional organization of actin filaments in dividing cultured cells. J Cell Biol. 1993 Nov;123(4):837–848. doi: 10.1083/jcb.123.4.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Forry-Schaudies S., Maihle N. J., Hughes S. H. Generation of skeletal, smooth and low molecular weight non-muscle tropomyosin isoforms from the chicken tropomyosin 1 gene. J Mol Biol. 1990 Jan 20;211(2):321–330. doi: 10.1016/0022-2836(90)90354-O. [DOI] [PubMed] [Google Scholar]
  19. Fowler V. M., Bennett V. Erythrocyte membrane tropomyosin. Purification and properties. J Biol Chem. 1984 May 10;259(9):5978–5989. [PubMed] [Google Scholar]
  20. Hegmann T. E., Lin J. L., Lin J. J. Motility-dependence of the heterogenous staining of culture cells by a monoclonal anti-tropomyosin antibody. J Cell Biol. 1988 Feb;106(2):385–393. doi: 10.1083/jcb.106.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hegmann T. E., Lin J. L., Lin J. J. Probing the role of nonmuscle tropomyosin isoforms in intracellular granule movement by microinjection of monoclonal antibodies. J Cell Biol. 1989 Sep;109(3):1141–1152. doi: 10.1083/jcb.109.3.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hendricks M., Weintraub H. Tropomyosin is decreased in transformed cells. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5633–5637. doi: 10.1073/pnas.78.9.5633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hitchcock-DeGregori S. E., Heald R. W. Altered actin and troponin binding of amino-terminal variants of chicken striated muscle alpha-tropomyosin expressed in Escherichia coli. J Biol Chem. 1987 Jul 15;262(20):9730–9735. [PubMed] [Google Scholar]
  24. Hitchcock-DeGregori S. E., Sampath P., Pollard T. D. Tropomyosin inhibits the rate of actin polymerization by stabilizing actin filaments. Biochemistry. 1988 Dec 27;27(26):9182–9185. doi: 10.1021/bi00426a016. [DOI] [PubMed] [Google Scholar]
  25. Ishikawa R., Yamashiro S., Matsumura F. Differential modulation of actin-severing activity of gelsolin by multiple isoforms of cultured rat cell tropomyosin. Potentiation of protective ability of tropomyosins by 83-kDa nonmuscle caldesmon. J Biol Chem. 1989 May 5;264(13):7490–7497. [PubMed] [Google Scholar]
  26. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  27. Lal A. A., Korn E. D. Effect of muscle tropomyosin on the kinetics of polymerization of muscle actin. Biochemistry. 1986 Mar 11;25(5):1154–1158. doi: 10.1021/bi00353a031. [DOI] [PubMed] [Google Scholar]
  28. Leavitt J., Latter G., Lutomski L., Goldstein D., Burbeck S. Tropomyosin isoform switching in tumorigenic human fibroblasts. Mol Cell Biol. 1986 Jul;6(7):2721–2726. doi: 10.1128/mcb.6.7.2721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lees-Miller J. P., Helfman D. M. The molecular basis for tropomyosin isoform diversity. Bioessays. 1991 Sep;13(9):429–437. doi: 10.1002/bies.950130902. [DOI] [PubMed] [Google Scholar]
  30. Libri D., Lemonnier M., Meinnel T., Fiszman M. Y. A single gene codes for the beta subunits of smooth and skeletal muscle tropomyosin in the chicken. J Biol Chem. 1989 Feb 15;264(5):2935–2944. [PubMed] [Google Scholar]
  31. Lin J. J., Chou C. S., Lin J. L. Monoclonal antibodies against chicken tropomyosin isoforms: production, characterization, and application. Hybridoma. 1985 Fall;4(3):223–242. doi: 10.1089/hyb.1985.4.223. [DOI] [PubMed] [Google Scholar]
  32. Lin J. J., Davis-Nanthakumar E. J., Jin J. P., Lourim D., Novy R. E., Lin J. L. Epitope mapping of monoclonal antibodies against caldesmon and their effects on the binding of caldesmon to Ca++/calmodulin and to actin or actin-tropomyosin filaments. Cell Motil Cytoskeleton. 1991;20(2):95–108. doi: 10.1002/cm.970200203. [DOI] [PubMed] [Google Scholar]
  33. Lin J. J., Hegmann T. E., Lin J. L. Differential localization of tropomyosin isoforms in cultured nonmuscle cells. J Cell Biol. 1988 Aug;107(2):563–572. doi: 10.1083/jcb.107.2.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lin J. J., Helfman D. M., Hughes S. H., Chou C. S. Tropomyosin isoforms in chicken embryo fibroblasts: purification, characterization, and changes in Rous sarcoma virus-transformed cells. J Cell Biol. 1985 Mar;100(3):692–703. doi: 10.1083/jcb.100.3.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lin J. J., Lin J. L., Davis-Nanthakumar E. J., Lourim D. Monoclonal antibodies against caldesmon, a Ca++/calmodulin- and actin-binding protein of smooth muscle and nonmuscle cells. Hybridoma. 1988 Jun;7(3):273–288. doi: 10.1089/hyb.1988.7.273. [DOI] [PubMed] [Google Scholar]
  36. Liu H. P., Bretscher A. Disruption of the single tropomyosin gene in yeast results in the disappearance of actin cables from the cytoskeleton. Cell. 1989 Apr 21;57(2):233–242. doi: 10.1016/0092-8674(89)90961-6. [DOI] [PubMed] [Google Scholar]
  37. Lourim D., Lin J. J. Expression of wild-type and nuclear localization-deficient human lamin A in chick myogenic cells. J Cell Sci. 1992 Nov;103(Pt 3):863–874. doi: 10.1242/jcs.103.3.863. [DOI] [PubMed] [Google Scholar]
  38. Mak A. S., Smillie L. B. Non-polymerizable tropomyosin: preparation, some properties and F-actin binding. Biochem Biophys Res Commun. 1981 Jul 16;101(1):208–214. doi: 10.1016/s0006-291x(81)80032-0. [DOI] [PubMed] [Google Scholar]
  39. Mariani B. D., Slate D. L., Schimke R. T. S phase-specific synthesis of dihydrofolate reductase in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4985–4989. doi: 10.1073/pnas.78.8.4985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Matsumura F., Yamashiro-Matsumura S. Purification and characterization of multiple isoforms of tropomyosin from rat cultured cells. J Biol Chem. 1985 Nov 5;260(25):13851–13859. [PubMed] [Google Scholar]
  41. Nomura M., Yoshikawa K., Tanaka T., Sobue K., Maruyama K. The role of tropomyosin in the interactions of F-actin with caldesmon and actin-binding protein (or filamin). Eur J Biochem. 1987 Mar 16;163(3):467–471. doi: 10.1111/j.1432-1033.1987.tb10892.x. [DOI] [PubMed] [Google Scholar]
  42. Novy R. E., Lin J. L., Lin C. S., Lin J. J. Human fibroblast tropomyosin isoforms: characterization of cDNA clones and analysis of tropomyosin isoform expression in human tissues and in normal and transformed cells. Cell Motil Cytoskeleton. 1993;25(3):267–281. doi: 10.1002/cm.970250307. [DOI] [PubMed] [Google Scholar]
  43. Novy R. E., Lin J. L., Lin J. J. Characterization of cDNA clones encoding a human fibroblast caldesmon isoform and analysis of caldesmon expression in normal and transformed cells. J Biol Chem. 1991 Sep 5;266(25):16917–16924. [PubMed] [Google Scholar]
  44. Novy R. E., Liu L. F., Lin C. S., Helfman D. M., Lin J. J. Expression of smooth muscle and nonmuscle tropomyosins in Escherichia coli and characterization of bacterially produced tropomyosins. Biochim Biophys Acta. 1993 Mar 26;1162(3):255–265. doi: 10.1016/0167-4838(93)90289-4. [DOI] [PubMed] [Google Scholar]
  45. Novy R. E., Sellers J. R., Liu L. F., Lin J. J. In vitro functional characterization of bacterially expressed human fibroblast tropomyosin isoforms and their chimeric mutants. Cell Motil Cytoskeleton. 1993;26(3):248–261. doi: 10.1002/cm.970260308. [DOI] [PubMed] [Google Scholar]
  46. Owada M. K., Hakura A., Iida K., Yahara I., Sobue K., Kakiuchi S. Occurrence of caldesmon (a calmodulin-binding protein) in cultured cells: comparison of normal and transformed cells. Proc Natl Acad Sci U S A. 1984 May;81(10):3133–3137. doi: 10.1073/pnas.81.10.3133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Phillips G. N., Jr, Fillers J. P., Cohen C. Tropomyosin crystal structure and muscle regulation. J Mol Biol. 1986 Nov 5;192(1):111–131. doi: 10.1016/0022-2836(86)90468-7. [DOI] [PubMed] [Google Scholar]
  48. Pittenger M. F., Helfman D. M. In vitro and in vivo characterization of four fibroblast tropomyosins produced in bacteria: TM-2, TM-3, TM-5a, and TM-5b are co-localized in interphase fibroblasts. J Cell Biol. 1992 Aug;118(4):841–858. doi: 10.1083/jcb.118.4.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Pittenger M. F., Kazzaz J. A., Helfman D. M. Functional properties of non-muscle tropomyosin isoforms. Curr Opin Cell Biol. 1994 Feb;6(1):96–104. doi: 10.1016/0955-0674(94)90122-8. [DOI] [PubMed] [Google Scholar]
  50. Prasad G. L., Fuldner R. A., Cooper H. L. Expression of transduced tropomyosin 1 cDNA suppresses neoplastic growth of cells transformed by the ras oncogene. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7039–7043. doi: 10.1073/pnas.90.15.7039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Raz A., Zöller M., Ben-Ze'ev Cell configuration and adhesive properties of metastasizing and non-metastasizing BSp73 rat adenocarcinoma cells. Exp Cell Res. 1986 Jan;162(1):127–141. doi: 10.1016/0014-4827(86)90431-3. [DOI] [PubMed] [Google Scholar]
  52. Sanders C., Sykes B. D., Smillie L. B. Comparison of the structure and dynamics of chicken gizzard and rabbit cardiac tropomyosins: 1H NMR spectroscopy and measurement of amide hydrogen exchange rates. Biochemistry. 1988 Sep 6;27(18):7000–7008. doi: 10.1021/bi00418a050. [DOI] [PubMed] [Google Scholar]
  53. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  54. Tanaka J., Watanabe T., Nakamura N., Sobue K. Morphological and biochemical analyses of contractile proteins (actin, myosin, caldesmon and tropomyosin) in normal and transformed cells. J Cell Sci. 1993 Feb;104(Pt 2):595–606. doi: 10.1242/jcs.104.2.595. [DOI] [PubMed] [Google Scholar]
  55. Vandekerckhove J., Bauw G., Vancompernolle K., Honoré B., Celis J. Comparative two-dimensional gel analysis and microsequencing identifies gelsolin as one of the most prominent downregulated markers of transformed human fibroblast and epithelial cells. J Cell Biol. 1990 Jul;111(1):95–102. doi: 10.1083/jcb.111.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Warren K. S., Lin J. J. Forced expression and assembly of rat cardiac troponin T isoforms in cultured muscle and nonmuscle cells. J Muscle Res Cell Motil. 1993 Dec;14(6):619–632. doi: 10.1007/BF00141559. [DOI] [PubMed] [Google Scholar]
  57. Warren K. S., Lin J. L., Wamboldt D. D., Lin J. J. Overexpression of human fibroblast caldesmon fragment containing actin-, Ca++/calmodulin-, and tropomyosin-binding domains stabilizes endogenous tropomyosin and microfilaments. J Cell Biol. 1994 Apr;125(2):359–368. doi: 10.1083/jcb.125.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yamashiro-Matsumura S., Matsumura F. Characterization of 83-kilodalton nonmuscle caldesmon from cultured rat cells: stimulation of actin binding of nonmuscle tropomyosin and periodic localization along microfilaments like tropomyosin. J Cell Biol. 1988 Jun;106(6):1973–1983. doi: 10.1083/jcb.106.6.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES