Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 May 1;129(3):683–695. doi: 10.1083/jcb.129.3.683

Mechanisms of thin filament assembly in embryonic chick cardiac myocytes: tropomodulin requires tropomyosin for assembly

PMCID: PMC2120443  PMID: 7730404

Abstract

Tropomodulin is a pointed end capping protein for tropomyosin-coated actin filaments that is hypothesized to play a role in regulating the precise lengths of striated muscle thin filaments (Fowler, V. M., M. A. Sussman, P. G. Miller, B. E. Flucher, and M. P. Daniels. 1993. J. Cell Biol. 120:411-420; Weber, A., C. C. Pennise, G. G. Babcock, and V. M. Fowler. 1994, J. Cell Biol. 127:1627-1635). To gain insight into the mechanisms of thin filament assembly and the role of tropomodulin therein, we have characterized the temporal appearance, biosynthesis and mechanisms of assembly of tropomodulin onto the pointed ends of thin filaments during the formation of striated myofibrils in primary embryonic chick cardiomyocyte cultures. Our results demonstrate that tropomodulin is not assembled coordinately with other thin filament proteins. Double immunofluorescence staining and ultrastructural immunolocalization demonstrate that tropomodulin is incorporated in its characteristic sarcomeric location at the pointed ends of the thin filaments after the thin filaments have become organized into periodic I bands. In fact, tropomodulin assembles later than all other well characterized myofibrillar proteins studied including: actin, tropomyosin, alpha-actinin, titin, myosin and C-protein. Nevertheless, at steady state, a significant proportion (approximately 39%) of tropomodulin is present in a soluble pool throughout myofibril assembly. Thus, the absence of tropomodulin in some striated myofibrils is not due to limiting quantities of the protein. In addition, kinetic data obtained from [35S]methionine pulse-chase experiments indicate that tropomodulin assembles more slowly into myofibrils than does tropomyosin. This observation, together with results obtained using a novel permeabilized cell model for thin filament assembly, indicate that tropomodulin assembly is dependent on the prior association of tropomyosin with actin filaments. We conclude that tropomodulin is a late marker for the assembly of striated myofibrils in cardiomyocytes; its assembly appears to be linked to their maturity. We propose that tropomodulin is involved in maintaining and stabilizing the final lengths of thin filaments after they are assembled.

Full Text

The Full Text of this article is available as a PDF (4.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antin P. B., Tokunaka S., Nachmias V. T., Holtzer H. Role of stress fiber-like structures in assembling nascent myofibrils in myosheets recovering from exposure to ethyl methanesulfonate. J Cell Biol. 1986 Apr;102(4):1464–1479. doi: 10.1083/jcb.102.4.1464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babcock G. G., Fowler V. M. Isoform-specific interaction of tropomodulin with skeletal muscle and erythrocyte tropomyosins. J Biol Chem. 1994 Nov 4;269(44):27510–27518. [PubMed] [Google Scholar]
  3. Black J. D., Koury S. T., Bankert R. B., Repasky E. A. Heterogeneity in lymphocyte spectrin distribution: ultrastructural identification of a new spectrin-rich cytoplasmic structure. J Cell Biol. 1988 Jan;106(1):97–109. doi: 10.1083/jcb.106.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bouché M., Goldfine S. M., Fischman D. A. Posttranslational incorporation of contractile proteins into myofibrils in a cell-free system. J Cell Biol. 1988 Aug;107(2):587–596. doi: 10.1083/jcb.107.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brook W. H., Connell S., Cannata J., Maloney J. E., Walker A. M. Ultrastructure of the myocardium during development from early fetal life to adult life in sheep. J Anat. 1983 Dec;137(Pt 4):729–741. [PMC free article] [PubMed] [Google Scholar]
  6. Broschat K. O. Tropomyosin prevents depolymerization of actin filaments from the pointed end. J Biol Chem. 1990 Dec 5;265(34):21323–21329. [PubMed] [Google Scholar]
  7. Dlugosz A. A., Antin P. B., Nachmias V. T., Holtzer H. The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes. J Cell Biol. 1984 Dec;99(6):2268–2278. doi: 10.1083/jcb.99.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dreyfuss G., Adam S. A., Choi Y. D. Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription. Mol Cell Biol. 1984 Mar;4(3):415–423. doi: 10.1128/mcb.4.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Epstein H. F., Fischman D. A. Molecular analysis of protein assembly in muscle development. Science. 1991 Mar 1;251(4997):1039–1044. doi: 10.1126/science.1998120. [DOI] [PubMed] [Google Scholar]
  10. Fowler V. M. Identification and purification of a novel Mr 43,000 tropomyosin-binding protein from human erythrocyte membranes. J Biol Chem. 1987 Sep 15;262(26):12792–12800. [PubMed] [Google Scholar]
  11. Fowler V. M., Sussmann M. A., Miller P. G., Flucher B. E., Daniels M. P. Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle. J Cell Biol. 1993 Jan;120(2):411–420. doi: 10.1083/jcb.120.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fowler V. M. Tropomodulin: a cytoskeletal protein that binds to the end of erythrocyte tropomyosin and inhibits tropomyosin binding to actin. J Cell Biol. 1990 Aug;111(2):471–481. doi: 10.1083/jcb.111.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fulton A. B., Isaacs W. B. Titin, a huge, elastic sarcomeric protein with a probable role in morphogenesis. Bioessays. 1991 Apr;13(4):157–161. doi: 10.1002/bies.950130403. [DOI] [PubMed] [Google Scholar]
  14. Fulton A. B., L'Ecuyer T. Cotranslational assembly of some cytoskeletal proteins: implications and prospects. J Cell Sci. 1993 Aug;105(Pt 4):867–871. doi: 10.1242/jcs.105.4.867. [DOI] [PubMed] [Google Scholar]
  15. Fürst D. O., Osborn M., Nave R., Weber K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol. 1988 May;106(5):1563–1572. doi: 10.1083/jcb.106.5.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fürst D. O., Osborn M., Weber K. Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol. 1989 Aug;109(2):517–527. doi: 10.1083/jcb.109.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gregorio C. C., Hudecki M. S., Pollina C. M., Repasky E. A. Effects of denervation on spectrin concentration in avian skeletal muscle. Muscle Nerve. 1988 Apr;11(4):372–379. doi: 10.1002/mus.880110414. [DOI] [PubMed] [Google Scholar]
  18. Gregorio C. C., Repasky E. A., Fowler V. M., Black J. D. Dynamic properties of ankyrin in T lymphocytes: colocalization with spectrin and protein kinase C beta. J Cell Biol. 1994 Apr;125(2):345–358. doi: 10.1083/jcb.125.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
  20. Handel S. E., Greaser M. L., Schultz E., Wang S. M., Bulinski J. C., Lin J. J., Lessard J. L. Chicken cardiac myofibrillogenesis studied with antibodies specific for titin and the muscle and nonmuscle isoforms of actin and tropomyosin. Cell Tissue Res. 1991 Mar;263(3):419–430. doi: 10.1007/BF00327276. [DOI] [PubMed] [Google Scholar]
  21. Ishiwata S., Funatsu T. Does actin bind to the ends of thin filaments in skeletal muscle? J Cell Biol. 1985 Jan;100(1):282–291. doi: 10.1083/jcb.100.1.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Komiyama M., Zhou Z. H., Maruyama K., Shimada Y. Spatial relationship of nebulin relative to other myofibrillar proteins during myogenesis in embryonic chick skeletal muscle cells in vitro. J Muscle Res Cell Motil. 1992 Feb;13(1):48–54. doi: 10.1007/BF01738427. [DOI] [PubMed] [Google Scholar]
  23. Kruger M., Wright J., Wang K. Nebulin as a length regulator of thin filaments of vertebrate skeletal muscles: correlation of thin filament length, nebulin size, and epitope profile. J Cell Biol. 1991 Oct;115(1):97–107. doi: 10.1083/jcb.115.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Legato M. J. Ultrastructural characteristics of the rat ventricular cell grown in tissue culture, with special reference to sarcomerogenesis. J Mol Cell Cardiol. 1972 Aug;4(4):299–317. doi: 10.1016/0022-2828(72)90077-6. [DOI] [PubMed] [Google Scholar]
  25. Lin J. J., Chou C. S., Lin J. L. Monoclonal antibodies against chicken tropomyosin isoforms: production, characterization, and application. Hybridoma. 1985 Fall;4(3):223–242. doi: 10.1089/hyb.1985.4.223. [DOI] [PubMed] [Google Scholar]
  26. Lin J. J., Matsumura F., Yamashiro-Matsumura S. Tropomyosin-enriched and alpha-actinin-enriched microfilaments isolated from chicken embryo fibroblasts by monoclonal antibodies. J Cell Biol. 1984 Jan;98(1):116–127. doi: 10.1083/jcb.98.1.116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lin Z. X., Holtzer S., Schultheiss T., Murray J., Masaki T., Fischman D. A., Holtzer H. Polygons and adhesion plaques and the disassembly and assembly of myofibrils in cardiac myocytes. J Cell Biol. 1989 Jun;108(6):2355–2367. doi: 10.1083/jcb.108.6.2355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lin Z., Lu M. H., Schultheiss T., Choi J., Holtzer S., DiLullo C., Fischman D. A., Holtzer H. Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: evidence for a conserved myoblast differentiation program in skeletal muscle. Cell Motil Cytoskeleton. 1994;29(1):1–19. doi: 10.1002/cm.970290102. [DOI] [PubMed] [Google Scholar]
  29. Lu M. H., DiLullo C., Schultheiss T., Holtzer S., Murray J. M., Choi J., Fischman D. A., Holtzer H. The vinculin/sarcomeric-alpha-actinin/alpha-actin nexus in cultured cardiac myocytes. J Cell Biol. 1992 Jun;117(5):1007–1022. doi: 10.1083/jcb.117.5.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Markwald R. R. Distribution and relationship of precursor Z material to organizing myofibrillar bundles in embryonic rat and hamster ventricular myocytes. J Mol Cell Cardiol. 1973 Aug;5(4):341–350. doi: 10.1016/0022-2828(73)90026-6. [DOI] [PubMed] [Google Scholar]
  31. McKenna N. M., Meigs J. B., Wang Y. L. Exchangeability of alpha-actinin in living cardiac fibroblasts and muscle cells. J Cell Biol. 1985 Dec;101(6):2223–2232. doi: 10.1083/jcb.101.6.2223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. McKenna N., Meigs J. B., Wang Y. L. Identical distribution of fluorescently labeled brain and muscle actins in living cardiac fibroblasts and myocytes. J Cell Biol. 1985 Jan;100(1):292–296. doi: 10.1083/jcb.100.1.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
  34. Mittal B., Sanger J. M., Sanger J. W. Visualization of myosin in living cells. J Cell Biol. 1987 Oct;105(4):1753–1760. doi: 10.1083/jcb.105.4.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Peng H. B., Wolosewick J. J., Cheng P. C. The development of myofibrils in cultured muscle cells: a whole-mount and thin-section electron microscopic study. Dev Biol. 1981 Nov;88(1):121–136. doi: 10.1016/0012-1606(81)90224-4. [DOI] [PubMed] [Google Scholar]
  36. Reinach F. C., Masaki T., Shafiq S., Obinata T., Fischman D. A. Isoforms of C-protein in adult chicken skeletal muscle: detection with monoclonal antibodies. J Cell Biol. 1982 Oct;95(1):78–84. doi: 10.1083/jcb.95.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rhee D., Sanger J. M., Sanger J. W. The premyofibril: evidence for its role in myofibrillogenesis. Cell Motil Cytoskeleton. 1994;28(1):1–24. doi: 10.1002/cm.970280102. [DOI] [PubMed] [Google Scholar]
  38. Sanger J. M., Mittal B., Pochapin M. B., Sanger J. W. Myofibrillogenesis in living cells microinjected with fluorescently labeled alpha-actinin. J Cell Biol. 1986 Jun;102(6):2053–2066. doi: 10.1083/jcb.102.6.2053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sanger J. W., Mittal B., Sanger J. M. Analysis of myofibrillar structure and assembly using fluorescently labeled contractile proteins. J Cell Biol. 1984 Mar;98(3):825–833. doi: 10.1083/jcb.98.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schafer D. A., Waddle J. A., Cooper J. A. Localization of CapZ during myofibrillogenesis in cultured chicken muscle. Cell Motil Cytoskeleton. 1993;25(4):317–335. doi: 10.1002/cm.970250403. [DOI] [PubMed] [Google Scholar]
  41. Schultheiss T., Lin Z. X., Lu M. H., Murray J., Fischman D. A., Weber K., Masaki T., Imamura M., Holtzer H. Differential distribution of subsets of myofibrillar proteins in cardiac nonstriated and striated myofibrils. J Cell Biol. 1990 Apr;110(4):1159–1172. doi: 10.1083/jcb.110.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shimada Y., Obinata T. Polarity of actin filaments at the initial stage of myofibril assembly in myogenic cells in vitro. J Cell Biol. 1977 Mar;72(3):777–785. doi: 10.1083/jcb.72.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Simpson D. G., Decker M. L., Clark W. A., Decker R. S. Contractile activity and cell-cell contact regulate myofibrillar organization in cultured cardiac myocytes. J Cell Biol. 1993 Oct;123(2):323–336. doi: 10.1083/jcb.123.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sung L. A., Lin J. J. Erythrocyte tropomodulin binds to the N-terminus of hTM5, a tropomyosin isoform encoded by the gamma-tropomyosin gene. Biochem Biophys Res Commun. 1994 Jun 15;201(2):627–634. doi: 10.1006/bbrc.1994.1747. [DOI] [PubMed] [Google Scholar]
  45. Sussman M. A., Sakhi S., Barrientos P., Ito M., Kedes L. Tropomodulin in rat cardiac muscle. Localization of protein is independent of messenger RNA distribution during myofibrillar development. Circ Res. 1994 Aug;75(2):221–232. doi: 10.1161/01.res.75.2.221. [DOI] [PubMed] [Google Scholar]
  46. Ursitti J. A., Fowler V. M. Immunolocalization of tropomodulin, tropomyosin and actin in spread human erythrocyte skeletons. J Cell Sci. 1994 Jun;107(Pt 6):1633–1639. doi: 10.1242/jcs.107.6.1633. [DOI] [PubMed] [Google Scholar]
  47. Wang K., Wright J. Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J Cell Biol. 1988 Dec;107(6 Pt 1):2199–2212. doi: 10.1083/jcb.107.6.2199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Weber A., Pennise C. R., Babcock G. G., Fowler V. M. Tropomodulin caps the pointed ends of actin filaments. J Cell Biol. 1994 Dec;127(6 Pt 1):1627–1635. doi: 10.1083/jcb.127.6.1627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Weigt C., Schoepper B., Wegner A. Tropomyosin-troponin complex stabilizes the pointed ends of actin filaments against polymerization and depolymerization. FEBS Lett. 1990 Jan 29;260(2):266–268. doi: 10.1016/0014-5793(90)80119-4. [DOI] [PubMed] [Google Scholar]
  50. Woo M. K., Fowler V. M. Identification and characterization of tropomodulin and tropomyosin in the adult rat lens. J Cell Sci. 1994 May;107(Pt 5):1359–1367. doi: 10.1242/jcs.107.5.1359. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES