Abstract
Schwann cells in culture divide in response to defined mitogens such as PDGF and glial growth factor (GGF), but proliferation is greatly enhanced if agents such as forskolin, which increases Schwann cell intracellular cAMP, are added at the same time as PDGF or GGF (Davis, J. B., and P. Stroobant. 1990. J. Cell Biol. 110:1353-1360). The effect of forskolin is probably due to an increase in numbers of PDGF receptors (Weinmaster, G., and G. Lemke. 1990. EMBO (Eur. Mol. Biol. Organ.) J. 9:915-920. Neuropeptides and beta-adrenergic agonists have been reported to have no effect on potentiating the mitogenic response of either PDGF or GGF. We show that the neuropeptide calcitonin gene- related peptide (CGRP) increases Schwann cell cAMP levels, but the cells rapidly desensitize. We therefore stimulated the cells in pulsatile fashion to partly overcome the effects of desensitization and show that CGRP can synergize with PDGF to stimulate Schwann cell proliferation, and that CGRP is as effective as forskolin in the pulsatile regime. CGRP is a good substrate for the neutral endopeptidase 24.11. Schwann cells in vivo have this protease on their surface, so the action of CGRP could be terminated by this enzyme and desensitization prevented. We therefore suggest that CGRP may play an important role in stimulating Schwann cell proliferation by regulating the response of mitogenic factors such as PDGF.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arvidsson U., Johnson H., Piehl F., Cullheim S., Hökfelt T., Risling M., Terenius L., Ulfhake B. Peripheral nerve section induces increased levels of calcitonin gene-related peptide (CGRP)-like immunoreactivity in axotomized motoneurons. Exp Brain Res. 1990;79(1):212–216. doi: 10.1007/BF00228891. [DOI] [PubMed] [Google Scholar]
- Barres B. A., Hart I. K., Coles H. S., Burne J. F., Voyvodic J. T., Richardson W. D., Raff M. C. Cell death and control of cell survival in the oligodendrocyte lineage. Cell. 1992 Jul 10;70(1):31–46. doi: 10.1016/0092-8674(92)90531-g. [DOI] [PubMed] [Google Scholar]
- Bottenstein J. E., Sato G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A. 1979 Jan;76(1):514–517. doi: 10.1073/pnas.76.1.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheah T. B., Geffen L. B. Effects of axonal injury on norepinephrine, tyrosine hydroxylase and monoamine oxidase levels in sympathetic ganglia. J Neurobiol. 1973;4(5):443–452. doi: 10.1002/neu.480040505. [DOI] [PubMed] [Google Scholar]
- Chen J. K., Yao L. L., Jenq C. B. Mitogenic response of rat Schwann cells to fibroblast growth factors is potentiated by increased intracellular cyclic AMP levels. J Neurosci Res. 1991 Oct;30(2):321–327. doi: 10.1002/jnr.490300207. [DOI] [PubMed] [Google Scholar]
- Cohen J. A., Yachnis A. T., Arai M., Davis J. G., Scherer S. S. Expression of the neu proto-oncogene by Schwann cells during peripheral nerve development and Wallerian degeneration. J Neurosci Res. 1992 Apr;31(4):622–634. doi: 10.1002/jnr.490310406. [DOI] [PubMed] [Google Scholar]
- Davies D., Medeiros M. S., Keen J., Turner A. J., Haynes L. W. Endopeptidase-24.11 cleaves a chemotactic factor from alpha-calcitonin gene-related peptide. Biochem Pharmacol. 1992 Apr 15;43(8):1753–1756. doi: 10.1016/0006-2952(92)90706-o. [DOI] [PubMed] [Google Scholar]
- Davis J. B., Stroobant P. Platelet-derived growth factors and fibroblast growth factors are mitogens for rat Schwann cells. J Cell Biol. 1990 Apr;110(4):1353–1360. doi: 10.1083/jcb.110.4.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dumoulin F. L., Raivich G., Streit W. J., Kreutzberg G. W. Differential Regulation of Calcitonin Gene-related Peptide (CGRP) in Regenerating Rat Facial Nucleus and Dorsal Root Ganglion. Eur J Neurosci. 1991;3(4):338–342. doi: 10.1111/j.1460-9568.1991.tb00820.x. [DOI] [PubMed] [Google Scholar]
- Eccleston P. A., Collarini E. J., Jessen K. R., Mirsky R., Richardson W. D. Schwann Cells Secrete a PDGF-like Factor: Evidence for an Autocrine Growth Mechanism involving PDGF. Eur J Neurosci. 1990 Oct;2(11):985–992. doi: 10.1111/j.1460-9568.1990.tb00011.x. [DOI] [PubMed] [Google Scholar]
- Eccleston P. A. Regulation of Schwann cell proliferation: mechanisms involved in peripheral nerve development. Exp Cell Res. 1992 Mar;199(1):1–9. doi: 10.1016/0014-4827(92)90455-h. [DOI] [PubMed] [Google Scholar]
- Fawcett J. W., Keynes R. J. Peripheral nerve regeneration. Annu Rev Neurosci. 1990;13:43–60. doi: 10.1146/annurev.ne.13.030190.000355. [DOI] [PubMed] [Google Scholar]
- Goodearl A. D., Davis J. B., Mistry K., Minghetti L., Otsu M., Waterfield M. D., Stroobant P. Purification of multiple forms of glial growth factor. J Biol Chem. 1993 Aug 25;268(24):18095–18102. [PubMed] [Google Scholar]
- Hökfelt T., Zhang X., Wiesenfeld-Hallin Z. Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci. 1994 Jan;17(1):22–30. doi: 10.1016/0166-2236(94)90031-0. [DOI] [PubMed] [Google Scholar]
- Kashiba H., Senba E., Kawai Y., Ueda Y., Tohyama M. Axonal blockade induces the expression of vasoactive intestinal polypeptide and galanin in rat dorsal root ganglion neurons. Brain Res. 1992 Apr 10;577(1):19–28. doi: 10.1016/0006-8993(92)90532-e. [DOI] [PubMed] [Google Scholar]
- Kashihara Y., Sakaguchi M., Kuno M. Axonal transport and distribution of endogenous calcitonin gene-related peptide in rat peripheral nerve. J Neurosci. 1989 Nov;9(11):3796–3802. doi: 10.1523/JNEUROSCI.09-11-03796.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenny A. J., Bourne A. Cellular reorganisation of membrane peptidases in Wallerian degeneration of pig peripheral nerve. J Neurocytol. 1991 Nov;20(11):875–885. doi: 10.1007/BF01190466. [DOI] [PubMed] [Google Scholar]
- Kioussi C., Crine P., Matsas R. Endopeptidase-24.11 is suppressed in myelin-forming but not in non-myelin-forming Schwann cells during development of the rat sciatic nerve. Neuroscience. 1992 Sep;50(1):69–83. doi: 10.1016/0306-4522(92)90382-c. [DOI] [PubMed] [Google Scholar]
- Lundberg J. M., Fahrenkrug J., Brimijoin S. Characteristics of the axonal transport of vasoactive intestinal polypeptide (VIP) in nerves of the cat. Acta Physiol Scand. 1981 Aug;112(4):427–436. doi: 10.1111/j.1748-1716.1981.tb06840.x. [DOI] [PubMed] [Google Scholar]
- Marchionni M. A., Goodearl A. D., Chen M. S., Bermingham-McDonogh O., Kirk C., Hendricks M., Danehy F., Misumi D., Sudhalter J., Kobayashi K. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature. 1993 Mar 25;362(6418):312–318. doi: 10.1038/362312a0. [DOI] [PubMed] [Google Scholar]
- McGregor G. P., Gibson S. J., Sabate I. M., Blank M. A., Christofides N. D., Wall P. D., Polak J. M., Bloom S. R. Effect of peripheral nerve section and nerve crush on spinal cord neuropeptides in the rat; increased VIP and PHI in the dorsal horn. Neuroscience. 1984 Sep;13(1):207–216. doi: 10.1016/0306-4522(84)90270-7. [DOI] [PubMed] [Google Scholar]
- Mudge A. W. Neural development: new ligands for Neu? Curr Biol. 1993 Jun 1;3(6):361–364. doi: 10.1016/0960-9822(93)90201-x. [DOI] [PubMed] [Google Scholar]
- Nielsch U., Keen P. Reciprocal regulation of tachykinin- and vasoactive intestinal peptide-gene expression in rat sensory neurones following cut and crush injury. Brain Res. 1989 Feb 27;481(1):25–30. doi: 10.1016/0006-8993(89)90481-2. [DOI] [PubMed] [Google Scholar]
- Noguchi K., Senba E., Morita Y., Sato M., Tohyama M. Alpha-CGRP and beta-CGRP mRNAs are differentially regulated in the rat spinal cord and dorsal root ganglion. Brain Res Mol Brain Res. 1990 May;7(4):299–304. doi: 10.1016/0169-328x(90)90080-w. [DOI] [PubMed] [Google Scholar]
- Nong Y. H., Titus R. G., Ribeiro J. M., Remold H. G. Peptides encoded by the calcitonin gene inhibit macrophage function. J Immunol. 1989 Jul 1;143(1):45–49. [PubMed] [Google Scholar]
- Ohmori Y., Strassman G., Hamilton T. A. cAMP differentially regulates expression of mRNA encoding IL-1 alpha and IL-1 beta in murine peritoneal macrophages. J Immunol. 1990 Nov 15;145(10):3333–3339. [PubMed] [Google Scholar]
- Raff M. C., Abney E., Brockes J. P., Hornby-Smith A. Schwann cell growth factors. Cell. 1978 Nov;15(3):813–822. doi: 10.1016/0092-8674(78)90266-0. [DOI] [PubMed] [Google Scholar]
- Raff M. C., Hornby-Smith A., Brockes J. P. Cyclic AMP as a mitogenic signal for cultured rat Schwann cells. Nature. 1978 Jun 22;273(5664):672–673. doi: 10.1038/273672a0. [DOI] [PubMed] [Google Scholar]
- Ratner N., Hong D. M., Lieberman M. A., Bunge R. P., Glaser L. The neuronal cell-surface molecule mitogenic for Schwann cells is a heparin-binding protein. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6992–6996. doi: 10.1073/pnas.85.18.6992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ridley A. J., Davis J. B., Stroobant P., Land H. Transforming growth factors-beta 1 and beta 2 are mitogens for rat Schwann cells. J Cell Biol. 1989 Dec;109(6 Pt 2):3419–3424. doi: 10.1083/jcb.109.6.3419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schubert D. Synergistic interactions between transforming growth factor beta and fibroblast growth factor regulate Schwann cell mitosis. J Neurobiol. 1992 Mar;23(2):143–148. doi: 10.1002/neu.480230205. [DOI] [PubMed] [Google Scholar]
- Shehab S. A., Atkinson M. E. Vasoactive intestinal polypeptide (VIP) increases in the spinal cord after peripheral axotomy of the sciatic nerve originate from primary afferent neurons. Brain Res. 1986 Apr 30;372(1):37–44. doi: 10.1016/0006-8993(86)91456-3. [DOI] [PubMed] [Google Scholar]
- Stewart H. J., Eccleston P. A., Jessen K. R., Mirsky R. Interaction between cAMP elevation, identified growth factors, and serum components in regulating Schwann cell growth. J Neurosci Res. 1991 Oct;30(2):346–352. doi: 10.1002/jnr.490300210. [DOI] [PubMed] [Google Scholar]
- Vignery A., Wang F., Ganz M. B. Macrophages express functional receptors for calcitonin-gene-related peptide. J Cell Physiol. 1991 Nov;149(2):301–306. doi: 10.1002/jcp.1041490217. [DOI] [PubMed] [Google Scholar]
- Villar M. J., Cortés R., Theodorsson E., Wiesenfeld-Hallin Z., Schalling M., Fahrenkrug J., Emson P. C., Hökfelt T. Neuropeptide expression in rat dorsal root ganglion cells and spinal cord after peripheral nerve injury with special reference to galanin. Neuroscience. 1989;33(3):587–604. doi: 10.1016/0306-4522(89)90411-9. [DOI] [PubMed] [Google Scholar]
- Wakisaka S., Kajander K. C., Bennett G. J. Effects of peripheral nerve injuries and tissue inflammation on the levels of neuropeptide Y-like immunoreactivity in rat primary afferent neurons. Brain Res. 1992 Dec 11;598(1-2):349–352. doi: 10.1016/0006-8993(92)90206-o. [DOI] [PubMed] [Google Scholar]
- Weinmaster G., Lemke G. Cell-specific cyclic AMP-mediated induction of the PDGF receptor. EMBO J. 1990 Mar;9(3):915–920. doi: 10.1002/j.1460-2075.1990.tb08189.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiik P. Vasoactive intestinal peptide inhibits the respiratory burst in human monocytes by a cyclic AMP-mediated mechanism. Regul Pept. 1989 May;25(2):187–197. doi: 10.1016/0167-0115(89)90260-7. [DOI] [PubMed] [Google Scholar]
- Yasuda T., Sobue G., Mitsuma T., Takahashi A. Peptidergic and adrenergic regulation of the intracellular 3',5'-cyclic adenosine monophosphate content in cultured rat Schwann cells. J Neurol Sci. 1988 Dec;88(1-3):315–325. doi: 10.1016/0022-510x(88)90228-6. [DOI] [PubMed] [Google Scholar]
- Zhu P. C., Thureson-Klein A., Klein R. L. Exocytosis from large dense cored vesicles outside the active synaptic zones of terminals within the trigeminal subnucleus caudalis: a possible mechanism for neuropeptide release. Neuroscience. 1986 Sep;19(1):43–54. doi: 10.1016/0306-4522(86)90004-7. [DOI] [PubMed] [Google Scholar]