Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Jun 1;129(5):1195–1204. doi: 10.1083/jcb.129.5.1195

Microinjection of mitotic cells with the 3F3/2 anti-phosphoepitope antibody delays the onset of anaphase

PMCID: PMC2120457  PMID: 7775567

Abstract

The transition from metaphase to anaphase is regulated by a checkpoint system that prevents chromosome segregation in anaphase until all the chromosomes have aligned at the metaphase plate. We provide evidence indicating that a kinetochore phosphoepitope plays a role in this checkpoint pathway. The 3F3/2 monoclonal antibody recognizes a kinetochore phosphoepitope in mammalian cells that is expressed on chromosomes before their congression to the metaphase plate. Once chromosomes are aligned, expression is lost and cells enter anaphase shortly thereafter. When microinjected into prophase cells, the 3F3/2 antibody caused a concentration-dependent delay in the onset of anaphase. Injected antibody inhibited the normal dephosphorylation of the 3F3/2 phosphoepitope at kinetochores. Microinjection of the antibody eliminated the asymmetric expression of the phosphoepitope normally seen on sister kinetochores of chromosomes during their movement to the metaphase plate. Chromosome movement to the metaphase plate appeared unaffected in cells injected with the antibody suggesting that asymmetric expression of the phosphoepitope on sister kinetochores is not required for chromosome congression to the metaphase plate. In antibody-injected cells, the epitope remained expressed at kinetochores throughout the prolonged metaphase, but had disappeared by the onset of anaphase. When normal cells in metaphase, lacking the epitope at kinetochores, were treated with agents that perturb microtubules, the 3F3/2 phosphoepitope quickly reappeared at kinetochores. Immunoelectron microscopy revealed that the 3F3/2 epitope is concentrated in the middle electronlucent layer of the trilaminar kinetochore structure. We propose that the 3F3/2 kinetochore phosphoepitope is involved in detecting stable kinetochore-microtubule attachment or is a signaling component of the checkpoint pathway regulating the metaphase to anaphase transition.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreassen P. R., Margolis R. L. Microtubule dependency of p34cdc2 inactivation and mitotic exit in mammalian cells. J Cell Biol. 1994 Nov;127(3):789–802. doi: 10.1083/jcb.127.3.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ault J. G., Nicklas R. B. Tension, microtubule rearrangements, and the proper distribution of chromosomes in mitosis. Chromosoma. 1989 Jun;98(1):33–39. doi: 10.1007/BF00293332. [DOI] [PubMed] [Google Scholar]
  3. Bernat R. L., Borisy G. G., Rothfield N. F., Earnshaw W. C. Injection of anticentromere antibodies in interphase disrupts events required for chromosome movement at mitosis. J Cell Biol. 1990 Oct;111(4):1519–1533. doi: 10.1083/jcb.111.4.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burry R. W., Vandré D. D., Hayes D. M. Silver enhancement of gold antibody probes in pre-embedding electron microscopic immunocytochemistry. J Histochem Cytochem. 1992 Dec;40(12):1849–1856. doi: 10.1177/40.12.1453003. [DOI] [PubMed] [Google Scholar]
  5. Cassimeris L., Rieder C. L., Rupp G., Salmon E. D. Stability of microtubule attachment to metaphase kinetochores in PtK1 cells. J Cell Sci. 1990 May;96(Pt 1):9–15. doi: 10.1242/jcs.96.1.9. [DOI] [PubMed] [Google Scholar]
  6. Cyert M. S., Scherson T., Kirschner M. W. Monoclonal antibodies specific for thiophosphorylated proteins recognize Xenopus MPF. Dev Biol. 1988 Sep;129(1):209–216. doi: 10.1016/0012-1606(88)90175-3. [DOI] [PubMed] [Google Scholar]
  7. DIETZ R. Multiple Geschlechtschromosomen bei den cypriden Ostracoden, ihre Evolution und ihr Teilungsverhalten. Chromosoma. 1958;9(5):359–440. [PubMed] [Google Scholar]
  8. De Brabander M., Geuens G., Nuydens R., Willebrords R., Aerts F., De Mey J. Microtubule dynamics during the cell cycle: the effects of taxol and nocodazole on the microtubule system of Pt K2 cells at different stages of the mitotic cycle. Int Rev Cytol. 1986;101:215–274. doi: 10.1016/s0074-7696(08)60250-8. [DOI] [PubMed] [Google Scholar]
  9. Gorbsky G. J. Kinetochores, microtubules and the metaphase checkpoint. Trends Cell Biol. 1995 Apr;5(4):143–148. doi: 10.1016/s0962-8924(00)88968-0. [DOI] [PubMed] [Google Scholar]
  10. Gorbsky G. J., Ricketts W. A. Differential expression of a phosphoepitope at the kinetochores of moving chromosomes. J Cell Biol. 1993 Sep;122(6):1311–1321. doi: 10.1083/jcb.122.6.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoyt M. A., Totis L., Roberts B. T. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell. 1991 Aug 9;66(3):507–517. doi: 10.1016/0092-8674(81)90014-3. [DOI] [PubMed] [Google Scholar]
  12. Jordan M. A., Thrower D., Wilson L. Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis. J Cell Sci. 1992 Jul;102(Pt 3):401–416. doi: 10.1242/jcs.102.3.401. [DOI] [PubMed] [Google Scholar]
  13. Kilmartin J. V. Genetic and biochemical approaches to spindle function and chromosome segregation in eukaryotic microorganisms. Curr Opin Cell Biol. 1994 Feb;6(1):50–54. doi: 10.1016/0955-0674(94)90115-5. [DOI] [PubMed] [Google Scholar]
  14. Li R., Murray A. W. Feedback control of mitosis in budding yeast. Cell. 1991 Aug 9;66(3):519–531. doi: 10.1016/0092-8674(81)90015-5. [DOI] [PubMed] [Google Scholar]
  15. Li X., Nicklas R. B. Mitotic forces control a cell-cycle checkpoint. Nature. 1995 Feb 16;373(6515):630–632. doi: 10.1038/373630a0. [DOI] [PubMed] [Google Scholar]
  16. Mayer-Jaekel R. E., Ohkura H., Gomes R., Sunkel C. E., Baumgartner S., Hemmings B. A., Glover D. M. The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell. 1993 Feb 26;72(4):621–633. doi: 10.1016/0092-8674(93)90080-a. [DOI] [PubMed] [Google Scholar]
  17. McEwen B. F., Arena J. T., Frank J., Rieder C. L. Structure of the colcemid-treated PtK1 kinetochore outer plate as determined by high voltage electron microscopic tomography. J Cell Biol. 1993 Jan;120(2):301–312. doi: 10.1083/jcb.120.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Minshull J., Sun H., Tonks N. K., Murray A. W. A MAP kinase-dependent spindle assembly checkpoint in Xenopus egg extracts. Cell. 1994 Nov 4;79(3):475–486. doi: 10.1016/0092-8674(94)90256-9. [DOI] [PubMed] [Google Scholar]
  19. Murray A. Cell cycle checkpoints. Curr Opin Cell Biol. 1994 Dec;6(6):872–876. doi: 10.1016/0955-0674(94)90059-0. [DOI] [PubMed] [Google Scholar]
  20. Neff M. W., Burke D. J. A delay in the Saccharomyces cerevisiae cell cycle that is induced by a dicentric chromosome and dependent upon mitotic checkpoints. Mol Cell Biol. 1992 Sep;12(9):3857–3864. doi: 10.1128/mcb.12.9.3857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nicklas R. B., Koch C. A. Chromosome micromanipulation. 3. Spindle fiber tension and the reorientation of mal-oriented chromosomes. J Cell Biol. 1969 Oct;43(1):40–50. doi: 10.1083/jcb.43.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ohkura H., Yanagida M. S. pombe gene sds22+ essential for a midmitotic transition encodes a leucine-rich repeat protein that positively modulates protein phosphatase-1. Cell. 1991 Jan 11;64(1):149–157. doi: 10.1016/0092-8674(91)90216-l. [DOI] [PubMed] [Google Scholar]
  23. Rieder C. L., Palazzo R. E. Colcemid and the mitotic cycle. J Cell Sci. 1992 Jul;102(Pt 3):387–392. doi: 10.1242/jcs.102.3.387. [DOI] [PubMed] [Google Scholar]
  24. Rieder C. L., Schultz A., Cole R., Sluder G. Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J Cell Biol. 1994 Dec;127(5):1301–1310. doi: 10.1083/jcb.127.5.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Simerly C., Balczon R., Brinkley B. R., Schatten G. Microinjected centromere [corrected] kinetochore antibodies interfere with chromosome movement in meiotic and mitotic mouse oocytes. J Cell Biol. 1990 Oct;111(4):1491–1504. doi: 10.1083/jcb.111.4.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Skibbens R. V., Skeen V. P., Salmon E. D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J Cell Biol. 1993 Aug;122(4):859–875. doi: 10.1083/jcb.122.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sluder G., Miller F. J., Thompson E. A., Wolf D. E. Feedback control of the metaphase-anaphase transition in sea urchin zygotes: role of maloriented chromosomes. J Cell Biol. 1994 Jul;126(1):189–198. doi: 10.1083/jcb.126.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Spencer F., Hieter P. Centromere DNA mutations induce a mitotic delay in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8908–8912. doi: 10.1073/pnas.89.19.8908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Taagepera S., Rao P. N., Drake F. H., Gorbsky G. J. DNA topoisomerase II alpha is the major chromosome protein recognized by the mitotic phosphoprotein antibody MPM-2. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8407–8411. doi: 10.1073/pnas.90.18.8407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vandre D. D., Davis F. M., Rao P. N., Borisy G. G. Phosphoproteins are components of mitotic microtubule organizing centers. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4439–4443. doi: 10.1073/pnas.81.14.4439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vandré D. D., Burry R. W. Immunoelectron microscopic localization of phosphoproteins associated with the mitotic spindle. J Histochem Cytochem. 1992 Dec;40(12):1837–1847. doi: 10.1177/40.12.1453002. [DOI] [PubMed] [Google Scholar]
  32. Yen T. J., Compton D. A., Wise D., Zinkowski R. P., Brinkley B. R., Earnshaw W. C., Cleveland D. W. CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J. 1991 May;10(5):1245–1254. doi: 10.1002/j.1460-2075.1991.tb08066.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zinkowski R. P., Meyne J., Brinkley B. R. The centromere-kinetochore complex: a repeat subunit model. J Cell Biol. 1991 Jun;113(5):1091–1110. doi: 10.1083/jcb.113.5.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. van den Pol A. N. Tyrosine hydroxylase immunoreactive neurons throughout the hypothalamus receive glutamate decarboxylase immunoreactive synapses: a double pre-embedding immunocytochemical study with particulate silver and HRP. J Neurosci. 1986 Mar;6(3):877–891. doi: 10.1523/JNEUROSCI.06-03-00877.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES