Abstract
We have previously shown that the binding to cells of a monoclonal antibody directed against the chick neural retina N- acetylgalactosaminylphosphotransferase (GalNAcPTase) results in inhibition of cadherin-mediated adhesion and neurite outgrowth. We hypothesized that the antibody mimics the action of an endogenous ligand. Chondroitin sulfate proteoglycans (CSPGs) are potential ligands because they inhibit adhesion and neurite outgrowth and are present in situ at barriers to neuronal growth. We therefore assayed purified CSPGs for their ability to inhibit homophilic cadherin-mediated adhesion and neurite outgrowth, as well as their ability to bind directly to the GalNAcPTase. A proteoglycan with a 250-kD core protein following removal of chondroitin sulfate chains (250-kD PG) inhibits cadherin-mediated adhesion and neurite outgrowth whether presented as the core protein or as a proteoglycan monomer bearing chondroitin sulfate. A proteoglycan with a 400-kD core protein is not inhibitory in either core protein or monomer form. Treatment of cells with phosphatidylinositol-specific phospholipase C, which removes cell surface GalNAcPTase, abolishes this inhibitory effect. Binding of the 250-kD core protein to cells is competed by the anti-GalNAcPTase antibody 1B11, suggesting that 1B11 and the 250-kD core protein bind to the same site or in close proximity. Moreover, soluble GalNAcPTase binds to the immobilized 250-kD core protein but not to the immobilized 400-kD core protein. Concomitant with inhibition of cadherin mediated adhesion, binding of the 250-kD core protein to the GalNAcPTase on cells results in the enhanced tyrosine phosphorylation of beta-catenin and the uncoupling of N-cadherin from its association with the cytoskeleton. Moreover, the 250-kD PG is present in embryonic chick retina and brain and is associated with the GalNAcPTase in situ. We conclude that the 250-kD PG is an endogenous ligand for the GalNAcPTase. Binding of the 250-kD PG to the GalNAcPTase initiates a signal cascade, involving the tyrosine phosphorylation of beta-catenin, which alters the association of cadherin with the actin-containing cytoskeleton and thereby inhibits adhesion and neurite outgrowth. Regulation of the temporal and spatial expression patterns of each member of the GalNacPTase/250-kD PG interactive pair may create opportunities for interaction that influence the course of development through effects on cadherin-based morphogenetic processes.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balsamo J., Lilien J. An N-acetylgalactosaminyltransferase and its acceptor in embryonic chick neural retina exist in interconvertible particulate forms depending on their cellular location. J Biol Chem. 1982 Jan 10;257(1):349–354. [PubMed] [Google Scholar]
- Balsamo J., Lilien J. N-cadherin is stably associated with and is an acceptor for a cell surface N-acetylgalactosaminylphosphotransferase. J Biol Chem. 1990 Feb 15;265(5):2923–2928. [PubMed] [Google Scholar]
- Balsamo J., Lilien J. The retina cell-surface N-acetylgalactosaminylphosphotransferase is anchored by a glycophosphatidylinositol. Biochemistry. 1993 Aug 17;32(32):8246–8250. doi: 10.1021/bi00083a027. [DOI] [PubMed] [Google Scholar]
- Balsamo J., Pratt R. S., Emmerling M. R., Grunwald G. B., Lilien J. Identification of the chick neural retina cell surface N-acetylgalactosaminyltransferase using monoclonal antibodies. J Cell Biochem. 1986;32(2):125–141. doi: 10.1002/jcb.240320205. [DOI] [PubMed] [Google Scholar]
- Balsamo J., Thiboldeaux R., Swaminathan N., Lilien J. Antibodies to the retina N-acetylgalactosaminylphosphotransferase modulate N-cadherin-mediated adhesion and uncouple the N-cadherin transferase complex from the actin-containing cytoskeleton. J Cell Biol. 1991 Apr;113(2):429–436. doi: 10.1083/jcb.113.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bauer G. E., Balsamo J., Lilien J. Cadherin-mediated adhesion in pancreatic islet cells is modulated by a cell surface N-acetylgalactosaminylphosphotransferase. J Cell Sci. 1992 Dec;103(Pt 4):1235–1241. doi: 10.1242/jcs.103.4.1235. [DOI] [PubMed] [Google Scholar]
- Behrens J., Vakaet L., Friis R., Winterhager E., Van Roy F., Mareel M. M., Birchmeier W. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J Cell Biol. 1993 Feb;120(3):757–766. doi: 10.1083/jcb.120.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bixby J. L., Zhang R. Purified N-cadherin is a potent substrate for the rapid induction of neurite outgrowth. J Cell Biol. 1990 Apr;110(4):1253–1260. doi: 10.1083/jcb.110.4.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brackenbury R., Rutishauser U., Edelman G. M. Distinct calcium-independent and calcium-dependent adhesion systems of chicken embryo cells. Proc Natl Acad Sci U S A. 1981 Jan;78(1):387–391. doi: 10.1073/pnas.78.1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brackenbury R., Thiery J. P., Rutishauser U., Edelman G. M. Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding. J Biol Chem. 1977 Oct 10;252(19):6835–6840. [PubMed] [Google Scholar]
- Butz S., Stappert J., Weissig H., Kemler R. Plakoglobin and beta-catenin: distinct but closely related. Science. 1992 Aug 21;257(5073):1142–1144. doi: 10.1126/science.257.5073.1142-a. [DOI] [PubMed] [Google Scholar]
- Chandrasekaran L., Tanzer M. L. Molecular cloning of chicken aggrecan. Structural analyses. Biochem J. 1992 Dec 15;288(Pt 3):903–910. doi: 10.1042/bj2880903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cole G. J., McCabe C. F. Identification of a developmentally regulated keratan sulfate proteoglycan that inhibits cell adhesion and neurite outgrowth. Neuron. 1991 Dec;7(6):1007–1018. doi: 10.1016/0896-6273(91)90345-z. [DOI] [PubMed] [Google Scholar]
- Friedlander D. R., Hoffman S., Edelman G. M. Functional mapping of cytotactin: proteolytic fragments active in cell-substrate adhesion. J Cell Biol. 1988 Dec;107(6 Pt 1):2329–2340. doi: 10.1083/jcb.107.6.2329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedlander D. R., Milev P., Karthikeyan L., Margolis R. K., Margolis R. U., Grumet M. The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. J Cell Biol. 1994 May;125(3):669–680. doi: 10.1083/jcb.125.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujimori T., Takeichi M. Disruption of epithelial cell-cell adhesion by exogenous expression of a mutated nonfunctional N-cadherin. Mol Biol Cell. 1993 Jan;4(1):37–47. doi: 10.1091/mbc.4.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gayá-González L., Balsamo J., Swaminathan N., Lilien J. Antibodies to the retina N-acetylgalactosaminylphosphotransferase inhibit neurite outgrowth. J Neurosci Res. 1991 Aug;29(4):474–480. doi: 10.1002/jnr.490290407. [DOI] [PubMed] [Google Scholar]
- Geisert E. E., Jr, Bidanset D. J. A central nervous system keratan sulfate proteoglycan: localization to boundaries in the neonatal rat brain. Brain Res Dev Brain Res. 1993 Oct 15;75(2):163–173. doi: 10.1016/0165-3806(93)90020-b. [DOI] [PubMed] [Google Scholar]
- Grumet M., Flaccus A., Margolis R. U. Functional characterization of chondroitin sulfate proteoglycans of brain: interactions with neurons and neural cell adhesion molecules. J Cell Biol. 1993 Feb;120(3):815–824. doi: 10.1083/jcb.120.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grumet M., Milev P., Sakurai T., Karthikeyan L., Bourdon M., Margolis R. K., Margolis R. U. Interactions with tenascin and differential effects on cell adhesion of neurocan and phosphacan, two major chondroitin sulfate proteoglycans of nervous tissue. J Biol Chem. 1994 Apr 22;269(16):12142–12146. [PubMed] [Google Scholar]
- Grunwald G. B., Geller R. L., Lilien J. Enzymatic dissection of embryonic cell adhesive mechanisms. J Cell Biol. 1980 Jun;85(3):766–776. doi: 10.1083/jcb.85.3.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gumbiner B. M. Proteins associated with the cytoplasmic surface of adhesion molecules. Neuron. 1993 Oct;11(4):551–564. doi: 10.1016/0896-6273(93)90068-3. [DOI] [PubMed] [Google Scholar]
- Guo M., Dow K. E., Kisilevsky R., Riopelle R. J. Novel neurite growth-inhibitory properties of an astrocyte proteoglycan. J Chem Neuroanat. 1993 Jul-Aug;6(4):239–245. doi: 10.1016/0891-0618(93)90045-6. [DOI] [PubMed] [Google Scholar]
- Hamaguchi M., Matsuyoshi N., Ohnishi Y., Gotoh B., Takeichi M., Nagai Y. p60v-src causes tyrosine phosphorylation and inactivation of the N-cadherin-catenin cell adhesion system. EMBO J. 1993 Jan;12(1):307–314. doi: 10.1002/j.1460-2075.1993.tb05658.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herrenknecht K., Ozawa M., Eckerskorn C., Lottspeich F., Lenter M., Kemler R. The uvomorulin-anchorage protein alpha catenin is a vinculin homologue. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9156–9160. doi: 10.1073/pnas.88.20.9156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman S., Dutton S. L., Ernst H., Boackle M. K., Everman D., Tourkin A., Loike J. D. Functional characterization of antiadhesion molecules. Perspect Dev Neurobiol. 1994;2(1):101–110. doi: 10.1080/0907676x.1994.9961227. [DOI] [PubMed] [Google Scholar]
- Hoffman S., Edelman G. M. A proteoglycan with HNK-1 antigenic determinants is a neuron-associated ligand for cytotactin. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2523–2527. doi: 10.1073/pnas.84.8.2523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kemler R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet. 1993 Sep;9(9):317–321. doi: 10.1016/0168-9525(93)90250-l. [DOI] [PubMed] [Google Scholar]
- Kintner C. Regulation of embryonic cell adhesion by the cadherin cytoplasmic domain. Cell. 1992 Apr 17;69(2):225–236. doi: 10.1016/0092-8674(92)90404-z. [DOI] [PubMed] [Google Scholar]
- Knudsen K. A., Wheelock M. J. Plakoglobin, or an 83-kD homologue distinct from beta-catenin, interacts with E-cadherin and N-cadherin. J Cell Biol. 1992 Aug;118(3):671–679. doi: 10.1083/jcb.118.3.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magee A. I., Buxton R. S. Transmembrane molecular assemblies regulated by the greater cadherin family. Curr Opin Cell Biol. 1991 Oct;3(5):854–861. doi: 10.1016/0955-0674(91)90060-c. [DOI] [PubMed] [Google Scholar]
- Magnani J. L., Thomas W. A., Steinberg M. S. Two distinct adhesion mechanisms in embryonic neural retina cells. I. A kinetic analysis. Dev Biol. 1981 Jan 15;81(1):96–105. doi: 10.1016/0012-1606(81)90351-1. [DOI] [PubMed] [Google Scholar]
- Margolis R. K., Margolis R. U. Nervous tissue proteoglycans. Experientia. 1993 May 15;49(5):429–446. doi: 10.1007/BF01923587. [DOI] [PubMed] [Google Scholar]
- Matsuyoshi N., Hamaguchi M., Taniguchi S., Nagafuchi A., Tsukita S., Takeichi M. Cadherin-mediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J Cell Biol. 1992 Aug;118(3):703–714. doi: 10.1083/jcb.118.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maurel P., Rauch U., Flad M., Margolis R. K., Margolis R. U. Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2512–2516. doi: 10.1073/pnas.91.7.2512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCrea P. D., Turck C. W., Gumbiner B. A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science. 1991 Nov 29;254(5036):1359–1361. doi: 10.1126/science.1962194. [DOI] [PubMed] [Google Scholar]
- Morris J. E. Proteoglycans and the modulation of cell adhesion by steric exclusion. Dev Dyn. 1993 Apr;196(4):246–251. doi: 10.1002/aja.1001960405. [DOI] [PubMed] [Google Scholar]
- Nagafuchi A., Takeichi M. Cell binding function of E-cadherin is regulated by the cytoplasmic domain. EMBO J. 1988 Dec 1;7(12):3679–3684. doi: 10.1002/j.1460-2075.1988.tb03249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagafuchi A., Takeichi M. Transmembrane control of cadherin-mediated cell adhesion: a 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin. Cell Regul. 1989 Nov;1(1):37–44. doi: 10.1091/mbc.1.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagafuchi A., Takeichi M., Tsukita S. The 102 kd cadherin-associated protein: similarity to vinculin and posttranscriptional regulation of expression. Cell. 1991 May 31;65(5):849–857. doi: 10.1016/0092-8674(91)90392-c. [DOI] [PubMed] [Google Scholar]
- Nörenberg U., Wille H., Wolff J. M., Frank R., Rathjen F. G. The chicken neural extracellular matrix molecule restrictin: similarity with EGF-, fibronectin type III-, and fibrinogen-like motifs. Neuron. 1992 May;8(5):849–863. doi: 10.1016/0896-6273(92)90199-n. [DOI] [PubMed] [Google Scholar]
- Oakley R. A., Tosney K. W. Peanut agglutinin and chondroitin-6-sulfate are molecular markers for tissues that act as barriers to axon advance in the avian embryo. Dev Biol. 1991 Sep;147(1):187–206. doi: 10.1016/s0012-1606(05)80017-x. [DOI] [PubMed] [Google Scholar]
- Oda T., Kanai Y., Shimoyama Y., Nagafuchi A., Tsukita S., Hirohashi S. Cloning of the human alpha-catenin cDNA and its aberrant mRNA in a human cancer cell line. Biochem Biophys Res Commun. 1993 Jun 30;193(3):897–904. doi: 10.1006/bbrc.1993.1710. [DOI] [PubMed] [Google Scholar]
- Oohira A., Matsui F., Katoh-Semba R. Inhibitory effects of brain chondroitin sulfate proteoglycans on neurite outgrowth from PC12D cells. J Neurosci. 1991 Mar;11(3):822–827. doi: 10.1523/JNEUROSCI.11-03-00822.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozawa M., Baribault H., Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 1989 Jun;8(6):1711–1717. doi: 10.1002/j.1460-2075.1989.tb03563.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peifer M., McCrea P. D., Green K. J., Wieschaus E., Gumbiner B. M. The vertebrate adhesive junction proteins beta-catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with similar properties. J Cell Biol. 1992 Aug;118(3):681–691. doi: 10.1083/jcb.118.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perides G., Erickson H. P., Rahemtulla F., Bignami A. Colocalization of tenascin with versican, a hyaluronate-binding chondroitin sulfate proteoglycan. Anat Embryol (Berl) 1993 Nov;188(5):467–479. doi: 10.1007/BF00190141. [DOI] [PubMed] [Google Scholar]
- Pindzola R. R., Doller C., Silver J. Putative inhibitory extracellular matrix molecules at the dorsal root entry zone of the spinal cord during development and after root and sciatic nerve lesions. Dev Biol. 1993 Mar;156(1):34–48. doi: 10.1006/dbio.1993.1057. [DOI] [PubMed] [Google Scholar]
- Rauch U., Karthikeyan L., Maurel P., Margolis R. U., Margolis R. K. Cloning and primary structure of neurocan, a developmentally regulated, aggregating chondroitin sulfate proteoglycan of brain. J Biol Chem. 1992 Sep 25;267(27):19536–19547. [PubMed] [Google Scholar]
- Runyan R. B., Versalovic J., Shur B. D. Functionally distinct laminin receptors mediate cell adhesion and spreading: the requirement for surface galactosyltransferase in cell spreading. J Cell Biol. 1988 Nov;107(5):1863–1871. doi: 10.1083/jcb.107.5.1863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwab M. E., Kapfhammer J. P., Bandtlow C. E. Inhibitors of neurite growth. Annu Rev Neurosci. 1993;16:565–595. doi: 10.1146/annurev.ne.16.030193.003025. [DOI] [PubMed] [Google Scholar]
- Scott L. J., Balsamo J., Sanes J. R., Lilien J. Synaptic localization and neural regulation of an N-acetylgalactosaminyl transferase in skeletal muscle. J Neurosci. 1990 Jan;10(1):346–350. doi: 10.1523/JNEUROSCI.10-01-00346.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shibamoto S., Hayakawa M., Takeuchi K., Hori T., Oku N., Miyazawa K., Kitamura N., Takeichi M., Ito F. Tyrosine phosphorylation of beta-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhes Commun. 1994 Jan;1(4):295–305. doi: 10.3109/15419069409097261. [DOI] [PubMed] [Google Scholar]
- Shimoyama Y., Nagafuchi A., Fujita S., Gotoh M., Takeichi M., Tsukita S., Hirohashi S. Cadherin dysfunction in a human cancer cell line: possible involvement of loss of alpha-catenin expression in reduced cell-cell adhesiveness. Cancer Res. 1992 Oct 15;52(20):5770–5774. [PubMed] [Google Scholar]
- Shinomura T., Nishida Y., Ito K., Kimata K. cDNA cloning of PG-M, a large chondroitin sulfate proteoglycan expressed during chondrogenesis in chick limb buds. Alternative spliced multiforms of PG-M and their relationships to versican. J Biol Chem. 1993 Jul 5;268(19):14461–14469. [PubMed] [Google Scholar]
- Sweatt A. J., Balsamo J., Lilien J. Immunolocalization of N-acetylgalactosaminylphosphotransferase in the adult retina and subretinal space. Exp Eye Res. 1991 Oct;53(4):479–487. doi: 10.1016/0014-4835(91)90165-b. [DOI] [PubMed] [Google Scholar]
- Takeichi M., Hirano S., Matsuyoshi N., Fujimori T. Cytoplasmic control of cadherin-mediated cell-cell adhesion. Cold Spring Harb Symp Quant Biol. 1992;57:327–334. doi: 10.1101/sqb.1992.057.01.037. [DOI] [PubMed] [Google Scholar]
- Tsukita S., Tsukita S., Nagafuchi A., Yonemura S. Molecular linkage between cadherins and actin filaments in cell-cell adherens junctions. Curr Opin Cell Biol. 1992 Oct;4(5):834–839. doi: 10.1016/0955-0674(92)90108-o. [DOI] [PubMed] [Google Scholar]
- Vleminckx K. L., Deman J. J., Bruyneel E. A., Vandenbossche G. M., Keirsebilck A. A., Mareel M. M., van Roy F. M. Enlarged cell-associated proteoglycans abolish E-cadherin functionality in invasive tumor cells. Cancer Res. 1994 Feb 15;54(4):873–877. [PubMed] [Google Scholar]