Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 May 2;129(4):1165–1176. doi: 10.1083/jcb.129.4.1165

Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils

PMCID: PMC2120487  PMID: 7744963

Abstract

Extracellular microfibrils, alone or in association with elastin, confer critical biomechanical properties on a variety of connective tissues. Little is known about the composition of the microfibrils or the factors responsible for their spatial organization into tissue- specific macroaggregates. Recent work has revealed the existence of two structurally related microfibrillar components, termed fibrillin-1 and fibrillin-2. The functional relationships between these glycoproteins and between them and other components of the microfibrils and elastic fibers are obscure. As a first step toward elucidating these important points, we compared the expression pattern of the fibrillin genes during mammalian embryogenesis. The results revealed that the two genes are differentially expressed, in terms of both developmental stages and tissue distribution. In the majority of cases, fibrillin-2 transcripts appear earlier and accumulate for a shorter period of time than fibrillin-1 transcripts. Synthesis of fibrillin-1 correlates with late morphogenesis and the appearance of well-defined organ structures; fibrillin-2 synthesis, on the other hand, coincides with early morphogenesis and, in particular, with the beginning of elastogenesis. The findings lend indirect support to our original hypothesis stating that fibrillins contribute to the compositional and functional heterogeneity of the microfibrils. The available evidence is also consistent with the notion that the fibrillins might have distinct, but related roles in microfibril physiology. Accordingly, we propose that fibrillin-1 provides mostly force-bearing structural support, whereas fibrillin-2 predominantly regulates the early process of elastic fiber assembly.

Full Text

The Full Text of this article is available as a PDF (6.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrikopoulos K., Liu X., Keene D. R., Jaenisch R., Ramirez F. Targeted mutation in the col5a2 gene reveals a regulatory role for type V collagen during matrix assembly. Nat Genet. 1995 Jan;9(1):31–36. doi: 10.1038/ng0195-31. [DOI] [PubMed] [Google Scholar]
  2. Andrikopoulos K., Suzuki H. R., Solursh M., Ramirez F. Localization of pro-alpha 2(V) collagen transcripts in the tissues of the developing mouse embryo. Dev Dyn. 1992 Oct;195(2):113–120. doi: 10.1002/aja.1001950205. [DOI] [PubMed] [Google Scholar]
  3. Bodley H. D., Wood R. L. Ultrastructural studies on elastic fibers using enzymatic digestion of thin sections. Anat Rec. 1972 Jan;172(1):71–88. doi: 10.1002/ar.1091720107. [DOI] [PubMed] [Google Scholar]
  4. Cleary E. G., Gibson M. A. Elastin-associated microfibrils and microfibrillar proteins. Int Rev Connect Tissue Res. 1983;10:97–209. doi: 10.1016/b978-0-12-363710-9.50009-5. [DOI] [PubMed] [Google Scholar]
  5. Collet A. J., Des Biens G. Fine structure of myogenesis and elastogenesis in the developing rat lung. Anat Rec. 1974 Jul;179(3):343–359. doi: 10.1002/ar.1091790306. [DOI] [PubMed] [Google Scholar]
  6. Corson G. M., Chalberg S. C., Dietz H. C., Charbonneau N. L., Sakai L. Y. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5' end. Genomics. 1993 Aug;17(2):476–484. doi: 10.1006/geno.1993.1350. [DOI] [PubMed] [Google Scholar]
  7. Dietz H. C., Cutting G. R., Pyeritz R. E., Maslen C. L., Sakai L. Y., Corson G. M., Puffenberger E. G., Hamosh A., Nanthakumar E. J., Curristin S. M. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991 Jul 25;352(6333):337–339. doi: 10.1038/352337a0. [DOI] [PubMed] [Google Scholar]
  8. Gibson M. A., Kumaratilake J. S., Cleary E. G. The protein components of the 12-nanometer microfibrils of elastic and nonelastic tissues. J Biol Chem. 1989 Mar 15;264(8):4590–4598. [PubMed] [Google Scholar]
  9. Horrigan S. K., Rich C. B., Streeten B. W., Li Z. Y., Foster J. A. Characterization of an associated microfibril protein through recombinant DNA techniques. J Biol Chem. 1992 May 15;267(14):10087–10095. [PubMed] [Google Scholar]
  10. Ishihara T., Iwata T., Furutani H., Uchino F., Maeda S. Relapsing polychondritis--report of a case with ultrastructural findings of the ear cartilage. Acta Pathol Jpn. 1973 Aug;23(3):577–590. doi: 10.1111/j.1440-1827.1973.tb01225.x. [DOI] [PubMed] [Google Scholar]
  11. Jones A. W., Barson A. J. Elastogenesis in the developing chick lung: a light and electron microscopical study. J Anat. 1971 Oct;110(Pt 1):1–15. [PMC free article] [PubMed] [Google Scholar]
  12. Kostović-Knezević L., Bradamante Z., Svajger A. Ultrastructure of elastic cartilage in the rat external ear. Cell Tissue Res. 1981;218(1):149–160. doi: 10.1007/BF00210101. [DOI] [PubMed] [Google Scholar]
  13. Lee B., Godfrey M., Vitale E., Hori H., Mattei M. G., Sarfarazi M., Tsipouras P., Ramirez F., Hollister D. W. Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature. 1991 Jul 25;352(6333):330–334. doi: 10.1038/352330a0. [DOI] [PubMed] [Google Scholar]
  14. Li X., Pereira L., Zhang H., Sanguineti C., Ramirez F., Bonadio J., Francke U. Fibrillin genes map to regions of conserved mouse/human synteny on mouse chromosomes 2 and 18. Genomics. 1993 Dec;18(3):667–672. doi: 10.1016/s0888-7543(05)80371-4. [DOI] [PubMed] [Google Scholar]
  15. Maslen C. L., Corson G. M., Maddox B. K., Glanville R. W., Sakai L. Y. Partial sequence of a candidate gene for the Marfan syndrome. Nature. 1991 Jul 25;352(6333):334–337. doi: 10.1038/352334a0. [DOI] [PubMed] [Google Scholar]
  16. Nielsen E. H. The elastic cartilage in the normal rat epiglottis. I. Fine structure. Cell Tissue Res. 1976 Oct 6;173(2):179–191. doi: 10.1007/BF00221374. [DOI] [PubMed] [Google Scholar]
  17. Noguchi A., Samaha H. Developmental changes in tropoelastin gene expression in the rat lung studied by in situ hybridization. Am J Respir Cell Mol Biol. 1991 Dec;5(6):571–578. doi: 10.1165/ajrcmb/5.6.571. [DOI] [PubMed] [Google Scholar]
  18. Pereira L., D'Alessio M., Ramirez F., Lynch J. R., Sykes B., Pangilinan T., Bonadio J. Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum Mol Genet. 1993 Jul;2(7):961–968. doi: 10.1093/hmg/2.7.961. [DOI] [PubMed] [Google Scholar]
  19. Quintarelli G., Starcher B. C., Vocaturo A., Di Gianfilippo F., Gotte L., Mecham R. P. Fibrogenesis and biosynthesis of elastin in cartilage. Connect Tissue Res. 1979;7(1):1–19. doi: 10.3109/03008207909152348. [DOI] [PubMed] [Google Scholar]
  20. Ramirez F., Pereira L., Zhang H., Lee B. The fibrillin-Marfan syndrome connection. Bioessays. 1993 Sep;15(9):589–594. doi: 10.1002/bies.950150904. [DOI] [PubMed] [Google Scholar]
  21. Robson P., Wright G. M., Sitarz E., Maiti A., Rawat M., Youson J. H., Keeley F. W. Characterization of lamprin, an unusual matrix protein from lamprey cartilage. Implications for evolution, structure, and assembly of elastin and other fibrillar proteins. J Biol Chem. 1993 Jan 15;268(2):1440–1447. [PubMed] [Google Scholar]
  22. Rosenbloom J., Abrams W. R., Mecham R. Extracellular matrix 4: the elastic fiber. FASEB J. 1993 Oct;7(13):1208–1218. [PubMed] [Google Scholar]
  23. Sakai L. Y., Keene D. R., Engvall E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol. 1986 Dec;103(6 Pt 1):2499–2509. doi: 10.1083/jcb.103.6.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sakai L. Y., Keene D. R., Glanville R. W., Bächinger H. P. Purification and partial characterization of fibrillin, a cysteine-rich structural component of connective tissue microfibrils. J Biol Chem. 1991 Aug 5;266(22):14763–14770. [PubMed] [Google Scholar]
  25. Sanzone C. F., Reith E. J. The development of the elastic cartilage of the mouse pinna. Am J Anat. 1976 May;146(1):31–71. doi: 10.1002/aja.1001460103. [DOI] [PubMed] [Google Scholar]
  26. Su M. W., Suzuki H. R., Bieker J. J., Solursh M., Ramirez F. Expression of two nonallelic type II procollagen genes during Xenopus laevis embryogenesis is characterized by stage-specific production of alternatively spliced transcripts. J Cell Biol. 1991 Oct;115(2):565–575. doi: 10.1083/jcb.115.2.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Williamson M. P. The structure and function of proline-rich regions in proteins. Biochem J. 1994 Jan 15;297(Pt 2):249–260. doi: 10.1042/bj2970249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yin W., Smiley E., Germiller J., Sanguineti C., Lawton T., Pereira L., Ramirez F., Bonadio J. Primary structure and developmental expression of Fbn-1, the mouse fibrillin gene. J Biol Chem. 1995 Jan 27;270(4):1798–1806. doi: 10.1074/jbc.270.4.1798. [DOI] [PubMed] [Google Scholar]
  29. Zhang H., Apfelroth S. D., Hu W., Davis E. C., Sanguineti C., Bonadio J., Mecham R. P., Ramirez F. Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J Cell Biol. 1994 Mar;124(5):855–863. doi: 10.1083/jcb.124.5.855. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES