Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Jul 1;130(1):105–115. doi: 10.1083/jcb.130.1.105

Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells

PMCID: PMC2120504  PMID: 7790366

Abstract

Relatively little is known about the mechanisms used by somatic cells to regulate the replication of the centrosome complex. Centrosome doubling was studied in CHO cells by electron microscopy and immunofluorescence microscopy using human autoimmune anticentrosome antiserum, and by Northern blotting using the cDNA encoding portion of the centrosome autoantigen pericentriolar material (PCM)-1. Centrosome doubling could be dissociated from cycles of DNA synthesis and mitotic division by arresting cells at the G1/S boundary of the cell cycle using either hydroxyurea or aphidicolin. Immunofluorescence micros-copy using SPJ human autoimmune anticentrosome antiserum demonstrated that arrested cells were able to undergo numerous rounds of centrosome replication in the absence of cycles of DNA synthesis and mitosis. Northern blot analysis demonstrated that the synthesis and degradation of the mRNA encoding PCM-1 occurred in a cell cycle-dependent fashion in CHO cells with peak levels of PCM-1 mRNA being present in G1 and S phase cells before mRNA amounts dropped to undetectable levels in G2 and M phases. Conversely, cells arrested at the G1/S boundary of the cell cycle maintained PCM-1 mRNA at artificially elevated levels, providing a possible molecular mechanism for explaining the multiple rounds of centrosome replication that occurred in CHO cells during prolonged hydroxyurea-induced arrest. The capacity to replicate centrosomes could be abolished in hydroxyurea-arrested CHO cells by culturing the cells in dialyzed serum. However, the ability to replicate centrosomes and to synthesize PCM-1 mRNA could be re- initiated by adding EGF to the dialyzed serum. This experimental system should be useful for investigating the positive and negative molecular mechanisms used by somatic cells to regulate the replication of centrosomes and for studying and the methods used by somatic cells for coordinating centrosome duplication with other cell cycle progression events.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balczon R. D., Brinkley B. R. Tubulin interaction with kinetochore proteins: analysis by in vitro assembly and chemical cross-linking. J Cell Biol. 1987 Aug;105(2):855–862. doi: 10.1083/jcb.105.2.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balczon R., Bao L., Zimmer W. E. PCM-1, A 228-kD centrosome autoantigen with a distinct cell cycle distribution. J Cell Biol. 1994 Mar;124(5):783–793. doi: 10.1083/jcb.124.5.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balczon R., West K. The identification of mammalian centrosomal antigens using human autoimmune anticentrosome antisera. Cell Motil Cytoskeleton. 1991;20(2):121–135. doi: 10.1002/cm.970200205. [DOI] [PubMed] [Google Scholar]
  4. Brinkley B. R. Microtubule organizing centers. Annu Rev Cell Biol. 1985;1:145–172. doi: 10.1146/annurev.cb.01.110185.001045. [DOI] [PubMed] [Google Scholar]
  5. Brinkley B. R., Zinkowski R. P., Mollon W. L., Davis F. M., Pisegna M. A., Pershouse M., Rao P. N. Movement and segregation of kinetochores experimentally detached from mammalian chromosomes. Nature. 1988 Nov 17;336(6196):251–254. doi: 10.1038/336251a0. [DOI] [PubMed] [Google Scholar]
  6. Carpenter G. Receptors for epidermal growth factor and other polypeptide mitogens. Annu Rev Biochem. 1987;56:881–914. doi: 10.1146/annurev.bi.56.070187.004313. [DOI] [PubMed] [Google Scholar]
  7. Chafouleas J. G., Lagacé L., Bolton W. E., Boyd A. E., 3rd, Means A. R. Changes in calmodulin and its mRNA accompany reentry of quiescent (G0) cells into the cell cycle. Cell. 1984 Jan;36(1):73–81. doi: 10.1016/0092-8674(84)90075-8. [DOI] [PubMed] [Google Scholar]
  8. Gard D. L., Hafezi S., Zhang T., Doxsey S. J. Centrosome duplication continues in cycloheximide-treated Xenopus blastulae in the absence of a detectable cell cycle. J Cell Biol. 1990 Jun;110(6):2033–2042. doi: 10.1083/jcb.110.6.2033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grandy D. K., Engel J. D., Dodgson J. B. Complete nucleotide sequence of a chicken H2b histone gene. J Biol Chem. 1982 Aug 10;257(15):8577–8580. [PubMed] [Google Scholar]
  10. Ham R. G., McKeehan W. L. Media and growth requirements. Methods Enzymol. 1979;58:44–93. doi: 10.1016/s0076-6879(79)58126-9. [DOI] [PubMed] [Google Scholar]
  11. Hamilton W. G., Ham R. G. Clonal growth of chinese hamster cell lines in protein-free media. In Vitro. 1977 Sep;13(9):537–547. doi: 10.1007/BF02627849. [DOI] [PubMed] [Google Scholar]
  12. Handeli S., Weintraub H. The ts41 mutation in Chinese hamster cells leads to successive S phases in the absence of intervening G2, M, and G1. Cell. 1992 Nov 13;71(4):599–611. doi: 10.1016/0092-8674(92)90594-3. [DOI] [PubMed] [Google Scholar]
  13. Ikegami S., Taguchi T., Ohashi M., Oguro M., Nagano H., Mano Y. Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-alpha. Nature. 1978 Oct 5;275(5679):458–460. doi: 10.1038/275458a0. [DOI] [PubMed] [Google Scholar]
  14. Kochanski R. S., Borisy G. G. Mode of centriole duplication and distribution. J Cell Biol. 1990 May;110(5):1599–1605. doi: 10.1083/jcb.110.5.1599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kovacs A. M., Zimmer W. E. Molecular cloning and expression of the chicken smooth muscle gamma-actin mRNA. Cell Motil Cytoskeleton. 1993;24(1):67–81. doi: 10.1002/cm.970240108. [DOI] [PubMed] [Google Scholar]
  16. Kuriyama R., Borisy G. G. Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy. J Cell Biol. 1981 Dec;91(3 Pt 1):814–821. doi: 10.1083/jcb.91.3.814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kuriyama R., Dasgupta S., Borisy G. G. Independence of centriole formation and initiation of DNA synthesis in Chinese hamster ovary cells. Cell Motil Cytoskeleton. 1986;6(4):355–362. doi: 10.1002/cm.970060402. [DOI] [PubMed] [Google Scholar]
  18. Maniotis A., Schliwa M. Microsurgical removal of centrosomes blocks cell reproduction and centriole generation in BSC-1 cells. Cell. 1991 Nov 1;67(3):495–504. doi: 10.1016/0092-8674(91)90524-3. [DOI] [PubMed] [Google Scholar]
  19. Nishioka D., Balczon R., Schatten G. Relationships between DNA synthesis and mitotic events in fertilized sea urchin eggs: aphidicolin inhibits DNA synthesis, nuclear breakdown and proliferation of microtubule organizing centers, but not cycles of microtubule assembly. Cell Biol Int Rep. 1984 Apr;8(4):337–346. doi: 10.1016/0309-1651(84)90161-9. [DOI] [PubMed] [Google Scholar]
  20. Palazzo R. E., Vaisberg E., Cole R. W., Rieder C. L. Centriole duplication in lysates of Spisula solidissima oocytes. Science. 1992 Apr 10;256(5054):219–221. doi: 10.1126/science.1566068. [DOI] [PubMed] [Google Scholar]
  21. Phillips S. G., Rattner J. B. Dependence of centriole formation on protein synthesis. J Cell Biol. 1976 Jul;70(1):9–19. doi: 10.1083/jcb.70.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Raff J. W., Glover D. M. Nuclear and cytoplasmic mitotic cycles continue in Drosophila embryos in which DNA synthesis is inhibited with aphidicolin. J Cell Biol. 1988 Dec;107(6 Pt 1):2009–2019. doi: 10.1083/jcb.107.6.2009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rao P. N., Johnson R. T. Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature. 1970 Jan 10;225(5228):159–164. doi: 10.1038/225159a0. [DOI] [PubMed] [Google Scholar]
  24. Rattner J. B., Phillips S. G. Independence of centriole formation and DNA synthesis. J Cell Biol. 1973 May;57(2):359–372. doi: 10.1083/jcb.57.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Robbins E., Jentzsch G., Micali A. The centriole cycle in synchronized HeLa cells. J Cell Biol. 1968 Feb;36(2):329–339. doi: 10.1083/jcb.36.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rose M. D., Biggins S., Satterwhite L. L. Unravelling the tangled web at the microtubule-organizing center. Curr Opin Cell Biol. 1993 Feb;5(1):105–115. doi: 10.1016/s0955-0674(05)80015-8. [DOI] [PubMed] [Google Scholar]
  27. Ross W., Rowe T., Glisson B., Yalowich J., Liu L. Role of topoisomerase II in mediating epipodophyllotoxin-induced DNA cleavage. Cancer Res. 1984 Dec;44(12 Pt 1):5857–5860. [PubMed] [Google Scholar]
  28. Schlegel R., Pardee A. B. Caffeine-induced uncoupling of mitosis from the completion of DNA replication in mammalian cells. Science. 1986 Jun 6;232(4755):1264–1266. doi: 10.1126/science.2422760. [DOI] [PubMed] [Google Scholar]
  29. Sherline P., Mascardo R. N. Co-ordinate control of centrosomal separation and DNA synthesis by growth regulators. Exp Cell Res. 1984 Jul;153(1):109–120. doi: 10.1016/0014-4827(84)90453-1. [DOI] [PubMed] [Google Scholar]
  30. Sherline P., Mascardo R. N. Epidermal growth factor induces rapid centrosomal separation in HeLa and 3T3 cells. J Cell Biol. 1982 May;93(2):507–512. doi: 10.1083/jcb.93.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sherline P., Mascardo R. Epidermal growth factor-induced centrosomal separation: mechanism and relationship to mitogenesis. J Cell Biol. 1982 Oct;95(1):316–322. doi: 10.1083/jcb.95.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sluder G., Lewis K. Relationship between nuclear DNA synthesis and centrosome reproduction in sea urchin eggs. J Exp Zool. 1987 Oct;244(1):89–100. doi: 10.1002/jez.1402440111. [DOI] [PubMed] [Google Scholar]
  33. Sluder G., Miller F. J., Cole R., Rieder C. L. Protein synthesis and the cell cycle: centrosome reproduction in sea urchin eggs is not under translational control. J Cell Biol. 1990 Jun;110(6):2025–2032. doi: 10.1083/jcb.110.6.2025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sluder G., Miller F. J., Rieder C. L. The reproduction of centrosomes: nuclear versus cytoplasmic controls. J Cell Biol. 1986 Nov;103(5):1873–1881. doi: 10.1083/jcb.103.5.1873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sluder G., Rieder C. L. Centriole number and the reproductive capacity of spindle poles. J Cell Biol. 1985 Mar;100(3):887–896. doi: 10.1083/jcb.100.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stein G., Park W., Thrall C., Mans R., Stein J. Regulation of cell cycle stage-specific transcription of histone genes from chromatin by non-histone chromosomal proteins. Nature. 1975 Oct 30;257(5529):764–767. doi: 10.1038/257764a0. [DOI] [PubMed] [Google Scholar]
  37. Van Eldik L. J., Zimmer W. E., Barger S. W., Watterson D. M. Perturbation of the calmodulin system in transformed cells. Adv Exp Med Biol. 1990;269:111–120. doi: 10.1007/978-1-4684-5754-4_18. [DOI] [PubMed] [Google Scholar]
  38. Zimmer W. E., Schloss J. A., Silflow C. D., Youngblom J., Watterson D. M. Structural organization, DNA sequence, and expression of the calmodulin gene. J Biol Chem. 1988 Dec 25;263(36):19370–19383. [PubMed] [Google Scholar]
  39. Zinkowski R. P., McCune S. L., Balczon R. D., Rao P. N., Brinkley B. R. The centromere and aneuploidy: I. Caffeine-induced detachment and fragmentation of kinetochores of mammalian chromosomes. Prog Clin Biol Res. 1989;318:43–60. [PubMed] [Google Scholar]
  40. Zinkowski R. P., Meyne J., Brinkley B. R. The centromere-kinetochore complex: a repeat subunit model. J Cell Biol. 1991 Jun;113(5):1091–1110. doi: 10.1083/jcb.113.5.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES