Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Jul 1;130(1):169–181. doi: 10.1083/jcb.130.1.169

Lens epithelial cell apoptosis appears to be a common cellular basis for non-congenital cataract development in humans and animals

PMCID: PMC2120521  PMID: 7790371

Abstract

Cataract is a major ocular disease that causes blindness in many developing countries of the world. It is well established that various factors such as oxidative stress, UV, and other toxic agents can induce both in vivo and in vitro cataract formation. However, a common cellular basis for this induction has not been previously recognized. The present study of lens epithelial cell viability suggests such a general mechanism. When lens epithelial cells from a group of 20 cataract patients 12 to 94 years old were analyzed by terminal deoxynucleotidyl transferase (TdT) labeling and DNA fragmentation assays, it was found that all of these patients had apoptotic epithelial cells ranging from 4.4 to 41.8%. By contrast, in eight normal human lenses of comparable age, very few apoptotic epithelial cells were observed. We suggest that cataract patients may have deficient defense systems against factors such as oxidative stress and UV at the onset of the disease. Such stress can trigger lens epithelial cell apoptosis that then may initiate cataract development. To test this hypothesis, it is also demonstrated here that hydrogen peroxide at concentrations previously found in some cataract patients induces both lens epithelial cell apoptosis and cortical opacity. Moreover, the temporal and spatial distribution of induced apoptotic lens epithelial cells precedes development of lens opacification. These results suggest that lens epithelial cell apoptosis may be a common cellular basis for initiation of noncongenital cataract formation.

Full Text

The Full Text of this article is available as a PDF (4.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson M., Sjöstrand J., Andersson A. K., Andersén B., Karlsson J. O. Calpains in lens epithelium from patients with cataract. Exp Eye Res. 1994 Sep;59(3):359–364. doi: 10.1006/exer.1994.1118. [DOI] [PubMed] [Google Scholar]
  2. Arends M. J., Morris R. G., Wyllie A. H. Apoptosis. The role of the endonuclease. Am J Pathol. 1990 Mar;136(3):593–608. [PMC free article] [PubMed] [Google Scholar]
  3. Arends M. J., Wyllie A. H. Apoptosis: mechanisms and roles in pathology. Int Rev Exp Pathol. 1991;32:223–254. doi: 10.1016/b978-0-12-364932-4.50010-1. [DOI] [PubMed] [Google Scholar]
  4. Bloemendal H. Proctor lecture. Disorganization of membranes and abnormal intermediate filament assembly lead to cataract. Invest Ophthalmol Vis Sci. 1991 Mar;32(3):445–455. [PubMed] [Google Scholar]
  5. Borchman D., Paterson C. A., Delamere N. A. Oxidative inhibition of Ca2+-ATPase in the rabbit lens. Invest Ophthalmol Vis Sci. 1989 Jul;30(7):1633–1637. [PubMed] [Google Scholar]
  6. Brown H. G., Pappas G. D., Ireland M. E., Kuszak J. R. Ultrastructural, biochemical, and immunologic evidence of receptor-mediated endocytosis in the crystalline lens. Invest Ophthalmol Vis Sci. 1990 Dec;31(12):2579–2592. [PubMed] [Google Scholar]
  7. Carson D. A., Ribeiro J. M. Apoptosis and disease. Lancet. 1993 May 15;341(8855):1251–1254. doi: 10.1016/0140-6736(93)91154-e. [DOI] [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Clark A. R., Docherty K. Negative regulation of transcription in eukaryotes. Biochem J. 1993 Dec 15;296(Pt 3):521–541. doi: 10.1042/bj2960521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cowan W. M., Fawcett J. W., O'Leary D. D., Stanfield B. B. Regressive events in neurogenesis. Science. 1984 Sep 21;225(4668):1258–1265. doi: 10.1126/science.6474175. [DOI] [PubMed] [Google Scholar]
  11. Curran T., Gordon M. B., Rubino K. L., Sambucetti L. C. Isolation and characterization of the c-fos(rat) cDNA and analysis of post-translational modification in vitro. Oncogene. 1987;2(1):79–84. [PubMed] [Google Scholar]
  12. David L. L., Azuma M., Shearer T. R. Cataract and the acceleration of calpain-induced beta-crystallin insolubilization occurring during normal maturation of rat lens. Invest Ophthalmol Vis Sci. 1994 Mar;35(3):785–793. [PubMed] [Google Scholar]
  13. David L. L., Shearer T. R. Calcium-activated proteolysis in the lens nucleus during selenite cataractogenesis. Invest Ophthalmol Vis Sci. 1984 Nov;25(11):1275–1283. [PubMed] [Google Scholar]
  14. David L. L., Varnum M. D., Lampi K. J., Shearer T. R. Calpain II in human lens. Invest Ophthalmol Vis Sci. 1989 Feb;30(2):269–275. [PubMed] [Google Scholar]
  15. Delamere N. A., Paterson C. A., Cotton T. R. Lens cation transport and permeability changes following exposure to hydrogen peroxide. Exp Eye Res. 1983 Jul;37(1):45–53. doi: 10.1016/0014-4835(83)90148-3. [DOI] [PubMed] [Google Scholar]
  16. Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
  17. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  18. Forrest V. J., Kang Y. H., McClain D. E., Robinson D. H., Ramakrishnan N. Oxidative stress-induced apoptosis prevented by Trolox. Free Radic Biol Med. 1994 Jun;16(6):675–684. doi: 10.1016/0891-5849(94)90182-1. [DOI] [PubMed] [Google Scholar]
  19. Fukui H. N. The effect of hydrogen peroxide on the rubidium transport of the rat lens. Exp Eye Res. 1976 Dec;23(6):595–599. doi: 10.1016/0014-4835(76)90217-7. [DOI] [PubMed] [Google Scholar]
  20. Garner M. H., Roy D., Rosenfeld L., Garner W. H., Spector A. Biochemical evidence for membrane disintegration in human cataracts. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1892–1895. doi: 10.1073/pnas.78.3.1892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Garner W. H., Garner M. H., Spector A. H2O2-induced uncoupling of bovine lens Na+,K+-ATPase. Proc Natl Acad Sci U S A. 1983 Apr;80(7):2044–2048. doi: 10.1073/pnas.80.7.2044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Giblin F. J., McCready J. P., Schrimscher L., Reddy V. N. Peroxide-induced effects on lens cation transport following inhibition of glutathione reductase activity in vitro. Exp Eye Res. 1987 Jul;45(1):77–91. doi: 10.1016/s0014-4835(87)80080-5. [DOI] [PubMed] [Google Scholar]
  24. Groux H., Torpier G., Monté D., Mouton Y., Capron A., Ameisen J. C. Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp Med. 1992 Feb 1;175(2):331–340. doi: 10.1084/jem.175.2.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hightower K. R., McCready J. P. Effect of selenite on epithelium of cultured rabbit lens. Invest Ophthalmol Vis Sci. 1991 Feb;32(2):406–409. [PubMed] [Google Scholar]
  26. Hightower K. R., Reddy V. N. Ca++-induced cataract. Invest Ophthalmol Vis Sci. 1982 Feb;22(2):263–267. [PubMed] [Google Scholar]
  27. Hightower K., McCready J. Mechanisms involved in cataract development following near-ultraviolet radiation of cultured lenses. Curr Eye Res. 1992 Jul;11(7):679–689. doi: 10.3109/02713689209000741. [DOI] [PubMed] [Google Scholar]
  28. Hockenbery D. M., Oltvai Z. N., Yin X. M., Milliman C. L., Korsmeyer S. J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993 Oct 22;75(2):241–251. doi: 10.1016/0092-8674(93)80066-n. [DOI] [PubMed] [Google Scholar]
  29. Hogquist K. A., Nett M. A., Unanue E. R., Chaplin D. D. Interleukin 1 is processed and released during apoptosis. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8485–8489. doi: 10.1073/pnas.88.19.8485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Iwasaki N., David L. L., Shearer T. R. Crystallin degradation and insolubilization in regions of young rat lens with calcium ionophore cataract. Invest Ophthalmol Vis Sci. 1995 Feb;36(2):502–509. [PubMed] [Google Scholar]
  31. Jose J. G., Pitts D. G. Wavelength dependency of cataracts in albino mice following chronic exposure. Exp Eye Res. 1985 Oct;41(4):545–563. doi: 10.1016/s0014-4835(85)80011-7. [DOI] [PubMed] [Google Scholar]
  32. Karim A. K., Jacob T. J., Thompson G. M. The human anterior lens capsule: cell density, morphology and mitotic index in normal and cataractous lenses. Exp Eye Res. 1987 Dec;45(6):865–874. doi: 10.1016/s0014-4835(87)80102-1. [DOI] [PubMed] [Google Scholar]
  33. Kerr J. F., Harmon B., Searle J. An electron-microscope study of cell deletion in the anuran tadpole tail during spontaneous metamorphosis with special reference to apoptosis of striated muscle fibers. J Cell Sci. 1974 May;14(3):571–585. doi: 10.1242/jcs.14.3.571. [DOI] [PubMed] [Google Scholar]
  34. Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239–257. doi: 10.1038/bjc.1972.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kleiman N. J., Wang R. R., Spector A. Hydrogen peroxide-induced DNA damage in bovine lens epithelial cells. Mutat Res. 1990 Jan;240(1):35–45. doi: 10.1016/0165-1218(90)90006-n. [DOI] [PubMed] [Google Scholar]
  36. Konofsky K., Naumann G. O., Guggenmoos-Holzmann I. Cell density and sex chromatin in lens epithelium of human cataracts. Quantitative studies in flat preparation. Ophthalmology. 1987 Jul;94(7):875–880. doi: 10.1016/s0161-6420(87)33543-2. [DOI] [PubMed] [Google Scholar]
  37. Kuszak J. R., Ennesser C. A., Bertram B. A., Imherr-McMannis S., Jones-Rufer L. S., Weinstein R. S. The contribution of cell-to-cell fusion to the ordered structure of the crystalline lens. Lens Eye Toxic Res. 1989;6(4):639–673. [PubMed] [Google Scholar]
  38. Laursen A. B., Fledelius H. Variations of lens thickness in relation to biomicroscopic types of human senile cataract. Acta Ophthalmol (Copenh) 1979 Feb;57(1):1–13. doi: 10.1111/j.1755-3768.1979.tb06653.x. [DOI] [PubMed] [Google Scholar]
  39. Lennon S. V., Martin S. J., Cotter T. G. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 1991 Mar;24(2):203–214. doi: 10.1111/j.1365-2184.1991.tb01150.x. [DOI] [PubMed] [Google Scholar]
  40. Li W. C., Riddiford L. M. The two duplicated insecticyanin genes, ins-a and ins-b are differentially expressed in the tobacco hornworm, Manduca sexta. Nucleic Acids Res. 1994 Aug 11;22(15):2945–2950. doi: 10.1093/nar/22.15.2945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Li W. C., Wang G. M., Wang R. R., Spector A. The redox active components H2O2 and N-acetyl-L-cysteine regulate expression of c-jun and c-fos in lens systems. Exp Eye Res. 1994 Aug;59(2):179–190. doi: 10.1006/exer.1994.1096. [DOI] [PubMed] [Google Scholar]
  42. McNamara M., Augusteyn R. C. The effects of hydrogen peroxide on lens proteins: a possible model for nuclear cataract. Exp Eye Res. 1984 Jan;38(1):45–56. doi: 10.1016/0014-4835(84)90137-4. [DOI] [PubMed] [Google Scholar]
  43. Meyaard L., Otto S. A., Jonker R. R., Mijnster M. J., Keet R. P., Miedema F. Programmed death of T cells in HIV-1 infection. Science. 1992 Jul 10;257(5067):217–219. doi: 10.1126/science.1352911. [DOI] [PubMed] [Google Scholar]
  44. Morgenbesser S. D., Williams B. O., Jacks T., DePinho R. A. p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature. 1994 Sep 1;371(6492):72–74. doi: 10.1038/371072a0. [DOI] [PubMed] [Google Scholar]
  45. Pan H., Griep A. E. Altered cell cycle regulation in the lens of HPV-16 E6 or E7 transgenic mice: implications for tumor suppressor gene function in development. Genes Dev. 1994 Jun 1;8(11):1285–1299. doi: 10.1101/gad.8.11.1285. [DOI] [PubMed] [Google Scholar]
  46. Papaconstantinou J. Molecular aspects of lens cell differentiation. Science. 1967 Apr 21;156(3773):338–346. doi: 10.1126/science.156.3773.338. [DOI] [PubMed] [Google Scholar]
  47. Piatigorsky J. Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation. 1981;19(3):134–153. doi: 10.1111/j.1432-0436.1981.tb01141.x. [DOI] [PubMed] [Google Scholar]
  48. Prigent P., Blanpied C., Aten J., Hirsch F. A safe and rapid method for analyzing apoptosis-induced fragmentation of DNA extracted from tissues or cultured cells. J Immunol Methods. 1993 Mar 15;160(1):139–140. doi: 10.1016/0022-1759(93)90018-3. [DOI] [PubMed] [Google Scholar]
  49. Riddles P. W., Blakeley R. L., Zerner B. Reassessment of Ellman's reagent. Methods Enzymol. 1983;91:49–60. doi: 10.1016/s0076-6879(83)91010-8. [DOI] [PubMed] [Google Scholar]
  50. Schmitz G. G., Walter T., Seibl R., Kessler C. Nonradioactive labeling of oligonucleotides in vitro with the hapten digoxigenin by tailing with terminal transferase. Anal Biochem. 1991 Jan;192(1):222–231. doi: 10.1016/0003-2697(91)90212-c. [DOI] [PubMed] [Google Scholar]
  51. Schwartz L. M., Smith S. W., Jones M. E., Osborne B. A. Do all programmed cell deaths occur via apoptosis? Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):980–984. doi: 10.1073/pnas.90.3.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Shearer T. R., David L. L., Anderson R. S., Azuma M. Review of selenite cataract. Curr Eye Res. 1992 Apr;11(4):357–369. doi: 10.3109/02713689209001789. [DOI] [PubMed] [Google Scholar]
  53. Siezen R. J., Coppin C. M., Kaplan E. D., Dwyer D., Thomson J. A. Oxidative modifications to crystallins induced in calf lenses in vitro by hydrogen peroxide. Exp Eye Res. 1989 Feb;48(2):225–235. doi: 10.1016/s0014-4835(89)80072-7. [DOI] [PubMed] [Google Scholar]
  54. Smeyne R. J., Vendrell M., Hayward M., Baker S. J., Miao G. G., Schilling K., Robertson L. M., Curran T., Morgan J. I. Continuous c-fos expression precedes programmed cell death in vivo. Nature. 1993 May 13;363(6425):166–169. doi: 10.1038/363166a0. [DOI] [PubMed] [Google Scholar]
  55. Spector A., Garner W. H. Hydrogen peroxide and human cataract. Exp Eye Res. 1981 Dec;33(6):673–681. doi: 10.1016/s0014-4835(81)80107-8. [DOI] [PubMed] [Google Scholar]
  56. Spector A., Wang G. M., Wang R. R., Garner W. H., Moll H. The prevention of cataract caused by oxidative stress in cultured rat lenses. I. H2O2 and photochemically induced cataract. Curr Eye Res. 1993 Feb;12(2):163–179. doi: 10.3109/02713689308999484. [DOI] [PubMed] [Google Scholar]
  57. Spector A., Wang G. M., Wang R. R., Li W. C., Kleiman N. J. A brief photochemically induced oxidative insult causes irreversible lens damage and cataract. II. Mechanism of action. Exp Eye Res. 1995 May;60(5):483–493. doi: 10.1016/s0014-4835(05)80063-6. [DOI] [PubMed] [Google Scholar]
  58. Spector A., Wang G. M., Wang R. R., Li W. C., Kuszak J. R. A brief photochemically induced oxidative insult causes irreversible lens damage and cataract. I. Transparency and epithelial cell layer. Exp Eye Res. 1995 May;60(5):471–481. doi: 10.1016/s0014-4835(05)80062-4. [DOI] [PubMed] [Google Scholar]
  59. Spector A., Wang G. M., Wang R. R. The prevention of cataract caused by oxidative stress in cultured rat lenses. II. Early effects of photochemical stress and recovery. Exp Eye Res. 1993 Dec;57(6):659–667. doi: 10.1006/exer.1993.1174. [DOI] [PubMed] [Google Scholar]
  60. Strasser A., Harris A. W., Cory S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell. 1991 Nov 29;67(5):889–899. doi: 10.1016/0092-8674(91)90362-3. [DOI] [PubMed] [Google Scholar]
  61. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Truscott R. J., Marcantonio J. M., Tomlinson J., Duncan G. Calcium-induced cleavage and breakdown of spectrin in the rat lens. Biochem Biophys Res Commun. 1989 Aug 15;162(3):1472–1477. doi: 10.1016/0006-291x(89)90840-1. [DOI] [PubMed] [Google Scholar]
  63. Tso J. Y., Sun X. H., Kao T. H., Reece K. S., Wu R. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucleic Acids Res. 1985 Apr 11;13(7):2485–2502. doi: 10.1093/nar/13.7.2485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Ueda N., Shah S. V. Endonuclease-induced DNA damage and cell death in oxidant injury to renal tubular epithelial cells. J Clin Invest. 1992 Dec;90(6):2593–2597. doi: 10.1172/JCI116154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Vasavada A. R., Cherian M., Yadav S., Rawal U. M. Lens epithelial cell density and histomorphological study in cataractous lenses. J Cataract Refract Surg. 1991 Nov;17(6):798–804. doi: 10.1016/s0886-3350(13)80415-4. [DOI] [PubMed] [Google Scholar]
  66. Williams G. T., Smith C. A., Spooncer E., Dexter T. M., Taylor D. R. Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature. 1990 Jan 4;343(6253):76–79. doi: 10.1038/343076a0. [DOI] [PubMed] [Google Scholar]
  67. Wyllie A. H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature. 1980 Apr 10;284(5756):555–556. doi: 10.1038/284555a0. [DOI] [PubMed] [Google Scholar]
  68. Yoshida H., Murachi T., Tsukahara I. Degradation of actin and vimentin by calpain II, a Ca2+-dependent cysteine proteinase, in bovine lens. FEBS Lett. 1984 May 21;170(2):259–262. doi: 10.1016/0014-5793(84)81324-1. [DOI] [PubMed] [Google Scholar]
  69. Yoshida H., Murachi T., Tsukahara I. Limited proteolysis of bovine lens alpha-crystallin by calpain, a Ca2+-dependent cysteine proteinase, isolated from the same tissue. Biochim Biophys Acta. 1984 Apr 10;798(2):252–259. doi: 10.1016/0304-4165(84)90313-1. [DOI] [PubMed] [Google Scholar]
  70. Zychlinsky A., Prevost M. C., Sansonetti P. J. Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992 Jul 9;358(6382):167–169. doi: 10.1038/358167a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES