Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Aug 1;130(3):529–536. doi: 10.1083/jcb.130.3.529

Transmembrane movement of a water-soluble analogue of mannosylphosphoryldolichol is mediated by an endoplasmic reticulum protein

PMCID: PMC2120537  PMID: 7622555

Abstract

Based on topological studies mannosylphosphoryldolichol (Man-P-Dol) is synthesized on the cytoplasmic face of the RER, but functions as a mannosyl donor in Glc3Man9GlcNAc2-P-P-dolichol biosynthesis after the mannosyl-phosphoryl headgroup diffuses transversely to the luminal compartment. The transport of mannosylphosphorylcitronellol (Man-P- Cit), a water-soluble analogue of Man-P-Dol, by microsomal vesicles from mouse liver, has been investigated as a potential experimental approach to determine if a membrane protein(s) mediates the transbilayer movement of Man-P-Dol. For these studies beta-[3H]Man-P- Cit was synthesized enzymatically with a partially purified preparation of Man-P-undecaprenol synthase from Micrococcus luteus. The uptake of the radiolabeled water-soluble analogue was found to be (a) time dependent; (b) stereoselective; (c) dependent on an intact permeability barrier; (d) saturable; (e) protease-sensitive; and (f) highest in ER- enriched vesicles relative to Golgi complex-enriched vesicles and intact mitochondria. Consistent with the involvement of a membrane protein, the analogue did not enter synthetic phosphatidylcholine- liposomes. [3H]Man-P-Cit also was not transported by human erythrocytes. These results indicate that the transport of Man-P-Cit by sealed microsomal vesicles from mouse liver is mediated by a membrane protein transport system. It is possible that the same membrane protein(s) participates in the transbilayer movement of Man-P-Dol in the ER.

Full Text

The Full Text of this article is available as a PDF (935.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeijon C., Hirschberg C. B. Topography of glycosylation reactions in the endoplasmic reticulum. Trends Biochem Sci. 1992 Jan;17(1):32–36. doi: 10.1016/0968-0004(92)90424-8. [DOI] [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. Bell G. I., Burant C. F., Takeda J., Gould G. W. Structure and function of mammalian facilitative sugar transporters. J Biol Chem. 1993 Sep 15;268(26):19161–19164. [PubMed] [Google Scholar]
  4. Bishop W. R., Bell R. M. Assembly of the endoplasmic reticulum phospholipid bilayer: the phosphatidylcholine transporter. Cell. 1985 Aug;42(1):51–60. doi: 10.1016/s0092-8674(85)80100-8. [DOI] [PubMed] [Google Scholar]
  5. Camp L. A., Chauhan P., Farrar J. D., Lehrman M. A. Defective mannosylation of glycosylphosphatidylinositol in Lec35 Chinese hamster ovary cells. J Biol Chem. 1993 Mar 25;268(9):6721–6728. [PubMed] [Google Scholar]
  6. Carey D. J., Sommers L. W., Hirschberg C. B. CMP-N-acetylneuraminic acid: isolation from and penetration into mouse liver microsomes. Cell. 1980 Mar;19(3):597–605. doi: 10.1016/s0092-8674(80)80036-5. [DOI] [PubMed] [Google Scholar]
  7. Coleman R., Bell R. M. Evidence that biosynthesis of phosphatidylethanolamine, phosphatidylcholine, and triacylglycerol occurs on the cytoplasmic side of microsomal vesicles. J Cell Biol. 1978 Jan;76(1):245–253. doi: 10.1083/jcb.76.1.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coste H., Martel M. B., Got R. Topology of glucosylceramide synthesis in Golgi membranes from porcine submaxillary glands. Biochim Biophys Acta. 1986 Jun 13;858(1):6–12. doi: 10.1016/0005-2736(86)90285-3. [DOI] [PubMed] [Google Scholar]
  9. DeLuca A. W., Rush J. S., Lehrman M. A., Waechter C. J. Mannolipid donor specificity of glycosylphosphatidylinositol mannosyltransferase-I (GPIMT-I) determined with an assay system utilizing mutant CHO-K1 cells. Glycobiology. 1994 Dec;4(6):909–915. doi: 10.1093/glycob/4.6.909. [DOI] [PubMed] [Google Scholar]
  10. Dotson S. B., Rush J. S., Ricketts A. D., Waechter C. J. Mannosylphosphoryldolichol-mediated O-mannosylation of yeast glycoproteins: stereospecificity and recognition of the alpha-isoprene unit by a purified mannosyltransferase. Arch Biochem Biophys. 1995 Feb 1;316(2):773–779. doi: 10.1006/abbi.1995.1103. [DOI] [PubMed] [Google Scholar]
  11. Englund P. T. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem. 1993;62:121–138. doi: 10.1146/annurev.bi.62.070193.001005. [DOI] [PubMed] [Google Scholar]
  12. Fleischer B., Smigel M. Solubilization and properties of galactosyltransferase and sulfotransferase activities of Golgi membranes in Triton X-100. J Biol Chem. 1978 Mar 10;253(5):1632–1638. [PubMed] [Google Scholar]
  13. Fleischer S., Kervina M. Subcellular fractionation of rat liver. Methods Enzymol. 1974;31:6–41. doi: 10.1016/0076-6879(74)31005-1. [DOI] [PubMed] [Google Scholar]
  14. Futerman A. H., Pagano R. E. Determination of the intracellular sites and topology of glucosylceramide synthesis in rat liver. Biochem J. 1991 Dec 1;280(Pt 2):295–302. doi: 10.1042/bj2800295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hanover J. A., Lennarz W. J. The topological orientation of N,N'-diacetylchitobiosylpyrophosphoryldolichol in artificial and natural membranes. J Biol Chem. 1979 Sep 25;254(18):9237–9246. [PubMed] [Google Scholar]
  16. Herscovics A., Orlean P. Glycoprotein biosynthesis in yeast. FASEB J. 1993 Apr 1;7(6):540–550. doi: 10.1096/fasebj.7.6.8472892. [DOI] [PubMed] [Google Scholar]
  17. Hirschberg C. B., Snider M. D. Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem. 1987;56:63–87. doi: 10.1146/annurev.bi.56.070187.000431. [DOI] [PubMed] [Google Scholar]
  18. Jeckel D., Karrenbauer A., Burger K. N., van Meer G., Wieland F. Glucosylceramide is synthesized at the cytosolic surface of various Golgi subfractions. J Cell Biol. 1992 Apr;117(2):259–267. doi: 10.1083/jcb.117.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kean E. L. Activation by dolichol phosphate-mannose of the biosynthesis of N-acetylglucosaminylpyrophosphoryl polyprenols by the retina. J Biol Chem. 1982 Jul 25;257(14):7952–7954. [PubMed] [Google Scholar]
  20. Kean E. L., Rush J. S., Waechter C. J. Activation of GlcNAc-P-P-dolichol synthesis by mannosylphosphoryldolichol is stereospecific and requires a saturated alpha-isoprene unit. Biochemistry. 1994 Aug 30;33(34):10508–10512. doi: 10.1021/bi00200a036. [DOI] [PubMed] [Google Scholar]
  21. Kean E. L. Stimulation by dolichol phosphate-mannose and phospholipids of the biosynthesis of N-acetylglucosaminylpyrophosphoryl dolichol. J Biol Chem. 1985 Oct 15;260(23):12561–12571. [PubMed] [Google Scholar]
  22. Klingenberg M. The ferricyanide method for elucidating the sidedness of membrane-bound dehydrogenases. Methods Enzymol. 1979;56:229–233. doi: 10.1016/0076-6879(79)56025-x. [DOI] [PubMed] [Google Scholar]
  23. Kornberg R. D., McConnell H. M. Inside-outside transitions of phospholipids in vesicle membranes. Biochemistry. 1971 Mar 30;10(7):1111–1120. doi: 10.1021/bi00783a003. [DOI] [PubMed] [Google Scholar]
  24. McCloskey M. A., Troy F. A. Paramagnetic isoprenoid carrier lipids. 2. Dispersion and dynamics in lipid membranes. Biochemistry. 1980 May 13;19(10):2061–2066. doi: 10.1021/bi00551a009. [DOI] [PubMed] [Google Scholar]
  25. Menon A. K., Mayor S., Schwarz R. T. Biosynthesis of glycosyl-phosphatidylinositol lipids in Trypanosoma brucei: involvement of mannosyl-phosphoryldolichol as the mannose donor. EMBO J. 1990 Dec;9(13):4249–4258. doi: 10.1002/j.1460-2075.1990.tb07873.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mulford C. A., Osborn M. J. An intermediate step in translocation of lipopolysaccharide to the outer membrane of Salmonella typhimurium. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1159–1163. doi: 10.1073/pnas.80.5.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. PENNINGTON R. J. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem J. 1961 Sep;80:649–654. doi: 10.1042/bj0800649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Raetz C. R. Biochemistry of endotoxins. Annu Rev Biochem. 1990;59:129–170. doi: 10.1146/annurev.bi.59.070190.001021. [DOI] [PubMed] [Google Scholar]
  29. Rodríguez-Vico F., Martínez-Cayuela M., García-Peregrín E., Ramírez H. A procedure for eliminating interferences in the lowry method of protein determination. Anal Biochem. 1989 Dec;183(2):275–278. doi: 10.1016/0003-2697(89)90479-x. [DOI] [PubMed] [Google Scholar]
  30. Rothman J. E., Dawidowicz E. A. Asymmetric exchange of vesicle phospholipids catalyzed by the phosphatidylcholine exhange protein. Measurement of inside--outside transitions. Biochemistry. 1975 Jul;14(13):2809–2816. doi: 10.1021/bi00684a004. [DOI] [PubMed] [Google Scholar]
  31. Rush J. S., Shelling J. G., Zingg N. S., Ray P. H., Waechter C. J. Mannosylphosphoryldolichol-mediated reactions in oligosaccharide-P-P-dolichol biosynthesis. Recognition of the saturated alpha-isoprene unit of the mannosyl donor by pig brain mannosyltransferases. J Biol Chem. 1993 Jun 25;268(18):13110–13117. [PubMed] [Google Scholar]
  32. Rush J. S., Waechter C. J. An anion-exchange radioassay for glucose 6-phosphate phosphatase: use in topological studies with endoplasmic reticulum vesicles. Anal Biochem. 1992 Nov 1;206(2):328–333. doi: 10.1016/0003-2697(92)90374-g. [DOI] [PubMed] [Google Scholar]
  33. Rush J. S., Waechter C. J. Method for the determination of cellular levels of guanosine-5'-diphosphate-mannose based on a weak interaction with concanavalin A at low pH. Anal Biochem. 1995 Jan 20;224(2):494–501. doi: 10.1006/abio.1995.1078. [DOI] [PubMed] [Google Scholar]
  34. Sandhoff K., van Echten G. Ganglioside metabolism: enzymology, topology and regulation. Prog Brain Res. 1994;101:17–29. doi: 10.1016/s0079-6123(08)61937-8. [DOI] [PubMed] [Google Scholar]
  35. Schroit A. J., Zwaal R. F. Transbilayer movement of phospholipids in red cell and platelet membranes. Biochim Biophys Acta. 1991 Nov 13;1071(3):313–329. doi: 10.1016/0304-4157(91)90019-s. [DOI] [PubMed] [Google Scholar]
  36. Sharma C. B., Babczinski P., Lehle L., Tanner W. The role of dolicholmonophosphate in glycoprotein biosynthesis in Saccharomyces cerevisiae. Eur J Biochem. 1974 Jul 1;46(1):35–41. doi: 10.1111/j.1432-1033.1974.tb03594.x. [DOI] [PubMed] [Google Scholar]
  37. Stoll J., Robbins A. R., Krag S. S. Mutant of Chinese hamster ovary cells with altered mannose 6-phosphate receptor activity is unable to synthesize mannosylphosphoryldolichol. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2296–2300. doi: 10.1073/pnas.79.7.2296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tanner W., Lehle L. Protein glycosylation in yeast. Biochim Biophys Acta. 1987 Apr 27;906(1):81–99. doi: 10.1016/0304-4157(87)90006-2. [DOI] [PubMed] [Google Scholar]
  39. Trotter P. J., Voelker D. R. Lipid transport processes in eukaryotic cells. Biochim Biophys Acta. 1994 Aug 4;1213(3):241–262. doi: 10.1016/0005-2760(94)00073-5. [DOI] [PubMed] [Google Scholar]
  40. Troy F. A., 2nd Polysialylation: from bacteria to brains. Glycobiology. 1992 Feb;2(1):5–23. doi: 10.1093/glycob/2.1.5. [DOI] [PubMed] [Google Scholar]
  41. Vidugiriene J., Menon A. K. The GPI anchor of cell-surface proteins is synthesized on the cytoplasmic face of the endoplasmic reticulum. J Cell Biol. 1994 Oct;127(2):333–341. doi: 10.1083/jcb.127.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Warren C. D., Jeanloz R. W. Chemical synthesis of dolichyl alpha-D-mannopyranosyl phosphate and citronellyl alpha-D-mannopyranosyl phosphate. Biochemistry. 1973 Dec 4;12(25):5038–5045. doi: 10.1021/bi00749a002. [DOI] [PubMed] [Google Scholar]
  43. Warren C. D., Jeanloz R. W. Chemical synthesis of dolichyl phosphate and dolichyl glycosyl phosphates and pyrophosphates or "dolichol intermediates". Methods Enzymol. 1978;50:122–137. doi: 10.1016/0076-6879(78)50010-4. [DOI] [PubMed] [Google Scholar]
  44. Weppner W. A., Neuhaus F. C. Biosynthesis of peptidoglycan. Definition of the microenvironment of undecaprenyl diphosphate-N-acetylmuramyl-(5-dimethylaminonaphthalene-1-sulfonyl) pentapeptide by fluorescence spectroscopy. J Biol Chem. 1978 Jan 25;253(2):472–478. [PubMed] [Google Scholar]
  45. Zachowski A., Devaux P. F. Transmembrane movements of lipids. Experientia. 1990 Jun 15;46(6):644–656. doi: 10.1007/BF01939703. [DOI] [PubMed] [Google Scholar]
  46. Zachowski A. Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J. 1993 Aug 15;294(Pt 1):1–14. doi: 10.1042/bj2940001. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES