Abstract
The teratocarcinoma-derived C1 clone behaves as a mesodermal tripotential progenitor cell whose choice of fate, either osteoblast, chondroblast, or adipoblast, is strictly dependent on the spatial organization of the cells and the nature of the induction. In the absence of cell contact before the addition of inducers, the C1 cells maintain a stable undifferentiated phenotype while expressing potential regulators of embryonic mesodermal stem cell fate such a M-twist and Id1. Upon establishment of cell contacts before the induction of differentiation, the early genes characteristic of the three fates become expressed. In the presence of beta glycerophosphate and ascorbate, provided the cells have formed aggregates, 95% of the C1 cells mineralize with a kinetics of gene expression close to that of osteoblasts (Poliard, A., D. Lamblin, P. J. Marie, M. H. Buc, and O. Kellerman. 1993. J. Cell Sci. 106:503-512). With 10(-6)M dexamethasone, 80% of the same aggregates differentiate into foci of chondroblast-like cells. The kinetics of expression of the genes encoding type II, IX, X, and XI collagens, aggrecan and link protein during the conversion toward cartilage hypertrophy resembles that accompanying in vivo chondrogenesis. The synergistic action of dexamethasone and insulin convert most confluent C1 cells into functional adipocytes and induce a pattern of gene expression close to that reported for adipoblast cell lines. The C1 clone with its capacity to differentiate along three alternative pathways with high frequency, therefore appears as a valid in vitro model for deciphering the molecular basis of mesoblast ontogeny.
Full Text
The Full Text of this article is available as a PDF (5.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams J. C., Watt F. M. Regulation of development and differentiation by the extracellular matrix. Development. 1993 Apr;117(4):1183–1198. doi: 10.1242/dev.117.4.1183. [DOI] [PubMed] [Google Scholar]
- Ahrens M., Ankenbauer T., Schröder D., Hollnagel A., Mayer H., Gross G. Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages. DNA Cell Biol. 1993 Dec;12(10):871–880. doi: 10.1089/dna.1993.12.871. [DOI] [PubMed] [Google Scholar]
- Ailhaud G., Grimaldi P., Négrel R. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr. 1992;12:207–233. doi: 10.1146/annurev.nu.12.070192.001231. [DOI] [PubMed] [Google Scholar]
- Apte S. S., Seldin M. F., Hayashi M., Olsen B. R. Cloning of the human and mouse type X collagen genes and mapping of the mouse type X collagen gene to chromosome 10. Eur J Biochem. 1992 May 15;206(1):217–224. doi: 10.1111/j.1432-1033.1992.tb16919.x. [DOI] [PubMed] [Google Scholar]
- Atsumi T., Miwa Y., Kimata K., Ikawa Y. A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells. Cell Differ Dev. 1990 May;30(2):109–116. doi: 10.1016/0922-3371(90)90079-c. [DOI] [PubMed] [Google Scholar]
- Benezra R., Davis R. L., Lockshon D., Turner D. L., Weintraub H. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell. 1990 Apr 6;61(1):49–59. doi: 10.1016/0092-8674(90)90214-y. [DOI] [PubMed] [Google Scholar]
- Bennett J. H., Joyner C. J., Triffitt J. T., Owen M. E. Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci. 1991 May;99(Pt 1):131–139. doi: 10.1242/jcs.99.1.131. [DOI] [PubMed] [Google Scholar]
- Beresford J. N., Bennett J. H., Devlin C., Leboy P. S., Owen M. E. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci. 1992 Jun;102(Pt 2):341–351. doi: 10.1242/jcs.102.2.341. [DOI] [PubMed] [Google Scholar]
- Beresford J. N. Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop Relat Res. 1989 Mar;(240):270–280. [PubMed] [Google Scholar]
- Bernier S. M., Goltzman D. Regulation of expression of the chondrocytic phenotype in a skeletal cell line (CFK2) in vitro. J Bone Miner Res. 1993 Apr;8(4):475–484. doi: 10.1002/jbmr.5650080412. [DOI] [PubMed] [Google Scholar]
- Berry L., Grant M. E., McClure J., Rooney P. Bone-marrow-derived chondrogenesis in vitro. J Cell Sci. 1992 Feb;101(Pt 2):333–342. doi: 10.1242/jcs.101.2.333. [DOI] [PubMed] [Google Scholar]
- Bornstein P., Sage H. Regulation of collagen gene expression. Prog Nucleic Acid Res Mol Biol. 1989;37:67–106. doi: 10.1016/s0079-6603(08)60695-9. [DOI] [PubMed] [Google Scholar]
- Bruckner P., Hörler I., Mendler M., Houze Y., Winterhalter K. H., Eich-Bender S. G., Spycher M. A. Induction and prevention of chondrocyte hypertrophy in culture. J Cell Biol. 1989 Nov;109(5):2537–2545. doi: 10.1083/jcb.109.5.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buc-Caron M. H., Launay J. M., Lamblin D., Kellermann O. Serotonin uptake, storage, and synthesis in an immortalized committed cell line derived from mouse teratocarcinoma. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1922–1926. doi: 10.1073/pnas.87.5.1922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castagnola P., Dozin B., Moro G., Cancedda R. Changes in the expression of collagen genes show two stages in chondrocyte differentiation in vitro. J Cell Biol. 1988 Feb;106(2):461–467. doi: 10.1083/jcb.106.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheah K. S., Lau E. T., Au P. K., Tam P. P. Expression of the mouse alpha 1(II) collagen gene is not restricted to cartilage during development. Development. 1991 Apr;111(4):945–953. doi: 10.1242/dev.111.4.945. [DOI] [PubMed] [Google Scholar]
- Chen P., Carrington J. L., Hammonds R. G., Reddi A. H. Stimulation of chondrogenesis in limb bud mesoderm cells by recombinant human bone morphogenetic protein 2B (BMP-2B) and modulation by transforming growth factor beta 1 and beta 2. Exp Cell Res. 1991 Aug;195(2):509–515. doi: 10.1016/0014-4827(91)90403-h. [DOI] [PubMed] [Google Scholar]
- Chentoufi J., Hott M., Lamblin D., Buc-Caron M. H., Marie P. J., Kellermann O. Kinetics of in vitro mineralization by an osteogenic clonal cell line (C1) derived from mouse teratocarcinoma. Differentiation. 1993 Jul;53(3):181–189. doi: 10.1111/j.1432-0436.1993.tb00707.x. [DOI] [PubMed] [Google Scholar]
- Cornelius P., MacDougald O. A., Lane M. D. Regulation of adipocyte development. Annu Rev Nutr. 1994;14:99–129. doi: 10.1146/annurev.nu.14.070194.000531. [DOI] [PubMed] [Google Scholar]
- Couly G. F., Coltey P. M., Le Douarin N. M. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development. 1992 Jan;114(1):1–15. doi: 10.1242/dev.114.1.1. [DOI] [PubMed] [Google Scholar]
- Dani C., Doglio A., Amri E. Z., Bardon S., Fort P., Bertrand B., Grimaldi P., Ailhaud G. Cloning and regulation of a mRNA specifically expressed in the preadipose state. J Biol Chem. 1989 Jun 15;264(17):10119–10125. [PubMed] [Google Scholar]
- Daniels K., Solursh M. Modulation of chondrogenesis by the cytoskeleton and extracellular matrix. J Cell Sci. 1991 Oct;100(Pt 2):249–254. doi: 10.1242/jcs.100.2.249. [DOI] [PubMed] [Google Scholar]
- Darmon M., Nicolas J. F., Lamblin D. 5-Azacytidine is able to induce the conversion of teratocarcinoma-derived mesenchymal cells into epithelia cells. EMBO J. 1984 May;3(5):961–967. doi: 10.1002/j.1460-2075.1984.tb01914.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Descalzi Cancedda F., Gentili C., Manduca P., Cancedda R. Hypertrophic chondrocytes undergo further differentiation in culture. J Cell Biol. 1992 Apr;117(2):427–435. doi: 10.1083/jcb.117.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doege K., Hassell J. R., Caterson B., Yamada Y. Link protein cDNA sequence reveals a tandemly repeated protein structure. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3761–3765. doi: 10.1073/pnas.83.11.3761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doege K., Sasaki M., Horigan E., Hassell J. R., Yamada Y. Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones. J Biol Chem. 1987 Dec 25;262(36):17757–17767. [PubMed] [Google Scholar]
- Evans S. M., O'Brien T. X. Expression of the helix-loop-helix factor Id during mouse embryonic development. Dev Biol. 1993 Oct;159(2):485–499. doi: 10.1006/dbio.1993.1258. [DOI] [PubMed] [Google Scholar]
- Forest C., Grimaldi P., Czerucka D., Negrel R., Ailhaud G. Establishment of a preadipocyte cell line from the epididymal fat pad of the lean C57 BL/6J mouse--long term effects of insulin and triiodothyronine on adipose conversion. In Vitro. 1983 Apr;19(4):344–354. doi: 10.1007/BF02619512. [DOI] [PubMed] [Google Scholar]
- Fort P., Marty L., Piechaczyk M., el Sabrouty S., Dani C., Jeanteur P., Blanchard J. M. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 1985 Mar 11;13(5):1431–1442. doi: 10.1093/nar/13.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedenstein A. J. Precursor cells of mechanocytes. Int Rev Cytol. 1976;47:327–359. doi: 10.1016/s0074-7696(08)60092-3. [DOI] [PubMed] [Google Scholar]
- Gonatas N. K., Stieber A., Hickey W. F., Herbert S. H., Gonatas J. O. Endosomes and Golgi vesicles in adsorptive and fluid phase endocytosis. J Cell Biol. 1984 Oct;99(4 Pt 1):1379–1390. doi: 10.1083/jcb.99.4.1379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grigoriadis A. E., Aubin J. E., Heersche J. N. Effects of dexamethasone and vitamin D3 on cartilage differentiation in a clonal chondrogenic cell population. Endocrinology. 1989 Oct;125(4):2103–2110. doi: 10.1210/endo-125-4-2103. [DOI] [PubMed] [Google Scholar]
- Grigoriadis A. E., Heersche J. N., Aubin J. E. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol. 1988 Jun;106(6):2139–2151. doi: 10.1083/jcb.106.6.2139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gurdon J. B. A community effect in animal development. Nature. 1988 Dec 22;336(6201):772–774. doi: 10.1038/336772a0. [DOI] [PubMed] [Google Scholar]
- Horton W. E., Yamada Y., Hassell J. R. Retinoic acid rapidly reduces cartilage matrix synthesis by altering gene transcription in chondrocytes. Dev Biol. 1987 Oct;123(2):508–516. doi: 10.1016/0012-1606(87)90409-x. [DOI] [PubMed] [Google Scholar]
- Ireland R. C., Kotarski M. A., Johnston L. A., Stadler U., Birkenmeier E., Kozak L. P. Primary structure of the mouse glycerol-3-phosphate dehydrogenase gene. J Biol Chem. 1986 Sep 5;261(25):11779–11785. [PubMed] [Google Scholar]
- Jakob H., Buckingham M. E., Cohen A., Dupont L., Fiszman M., Jacob F. A skeletal muscle cell line isolated from a mouse teratocarcinoma undergoes apparently normal terminal differentiation in vitro. Exp Cell Res. 1978 Jul;114(2):403–408. doi: 10.1016/0014-4827(78)90499-8. [DOI] [PubMed] [Google Scholar]
- Jiang T. X., Yi J. R., Ying S. Y., Chuong C. M. Activin enhances chondrogenesis of limb bud cells: stimulation of precartilaginous mesenchymal condensations and expression of NCAM. Dev Biol. 1993 Feb;155(2):545–557. doi: 10.1006/dbio.1993.1051. [DOI] [PubMed] [Google Scholar]
- Kato Y., Gospodarowicz D. Stimulation by glucocorticoid of the synthesis of cartilage-matrix proteoglycans produced by rabbit costal chondrocytes in vitro. J Biol Chem. 1985 Feb 25;260(4):2364–2373. [PubMed] [Google Scholar]
- Kawada T., Aoki N., Kamei Y., Maeshige K., Nishiu S., Sugimoto E. Comparative investigation of vitamins and their analogues on terminal differentiation, from preadipocytes to adipocytes, of 3T3-L1 cells. Comp Biochem Physiol A Comp Physiol. 1990;96(2):323–326. doi: 10.1016/0300-9629(90)90699-s. [DOI] [PubMed] [Google Scholar]
- Kellermann O., Buc-Caron M. H., Gaillard J. Immortalization of precursors of endodermal, neuroectodermal and mesodermal lineages, following the introduction of the simian virus (SV40) early region into F9 cells. Differentiation. 1987;35(3):197–205. doi: 10.1111/j.1432-0436.1987.tb00169.x. [DOI] [PubMed] [Google Scholar]
- Kellermann O., Buc-Caron M. H., Marie P. J., Lamblin D., Jacob F. An immortalized osteogenic cell line derived from mouse teratocarcinoma is able to mineralize in vivo and in vitro. J Cell Biol. 1990 Jan;110(1):123–132. doi: 10.1083/jcb.110.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kellermann O., Kelly F. Immortalization of early embryonic cell derivatives after the transfer of the early region of simian virus 40 into F9 teratocarcinoma cells. Differentiation. 1986;32(1):74–81. doi: 10.1111/j.1432-0436.1986.tb00558.x. [DOI] [PubMed] [Google Scholar]
- Kirchgessner T. G., Svenson K. L., Lusis A. J., Schotz M. C. The sequence of cDNA encoding lipoprotein lipase. A member of a lipase gene family. J Biol Chem. 1987 Jun 25;262(18):8463–8466. [PubMed] [Google Scholar]
- Kirsch T., Swoboda B., von der Mark K. Ascorbate independent differentiation of human chondrocytes in vitro: simultaneous expression of types I and X collagen and matrix mineralization. Differentiation. 1992 Dec;52(1):89–100. doi: 10.1111/j.1432-0436.1992.tb00503.x. [DOI] [PubMed] [Google Scholar]
- Kodama H. A., Amagai Y., Koyama H., Kasai S. Hormonal responsiveness of a preadipose cell line derived from newborn mouse calvaria. J Cell Physiol. 1982 Jul;112(1):83–88. doi: 10.1002/jcp.1041120113. [DOI] [PubMed] [Google Scholar]
- Konieczny S. F., Emerson C. P., Jr 5-Azacytidine induction of stable mesodermal stem cell lineages from 10T1/2 cells: evidence for regulatory genes controlling determination. Cell. 1984 Oct;38(3):791–800. doi: 10.1016/0092-8674(84)90274-5. [DOI] [PubMed] [Google Scholar]
- Kosher R. A., Kulyk W. M., Gay S. W. Collagen gene expression during limb cartilage differentiation. J Cell Biol. 1986 Apr;102(4):1151–1156. doi: 10.1083/jcb.102.4.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leonard C. M., Fuld H. M., Frenz D. A., Downie S. A., Massagué J., Newman S. A. Role of transforming growth factor-beta in chondrogenic pattern formation in the embryonic limb: stimulation of mesenchymal condensation and fibronectin gene expression by exogenenous TGF-beta and evidence for endogenous TGF-beta-like activity. Dev Biol. 1991 May;145(1):99–109. doi: 10.1016/0012-1606(91)90216-p. [DOI] [PubMed] [Google Scholar]
- Mallein-Gerin F., Olsen B. R. Expression of simian virus 40 large T (tumor) oncogene in mouse chondrocytes induces cell proliferation without loss of the differentiated phenotype. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3289–3293. doi: 10.1073/pnas.90.8.3289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mayne R., Vail M. S., Mayne P. M., Miller E. J. Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc Natl Acad Sci U S A. 1976 May;73(5):1674–1678. doi: 10.1073/pnas.73.5.1674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metsäranta M., Toman D., De Crombrugghe B., Vuorio E. Specific hybridization probes for mouse type I, II, III and IX collagen mRNAs. Biochim Biophys Acta. 1991 Jun 13;1089(2):241–243. doi: 10.1016/0167-4781(91)90014-d. [DOI] [PubMed] [Google Scholar]
- Meunier P., Aaron J., Edouard C., Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res. 1971 Oct;80:147–154. doi: 10.1097/00003086-197110000-00021. [DOI] [PubMed] [Google Scholar]
- Nah H. D., Barembaum M., Upholt W. B. The chicken alpha 1 (XI) collagen gene is widely expressed in embryonic tissues. J Biol Chem. 1992 Nov 5;267(31):22581–22586. [PubMed] [Google Scholar]
- Ng L. J., Tam P. P., Cheah K. S. Preferential expression of alternatively spliced mRNAs encoding type II procollagen with a cysteine-rich amino-propeptide in differentiating cartilage and nonchondrogenic tissues during early mouse development. Dev Biol. 1993 Oct;159(2):403–417. doi: 10.1006/dbio.1993.1251. [DOI] [PubMed] [Google Scholar]
- Ono M., Aratani Y., Kitagawa I., Kitagawa Y. Ascorbic acid phosphate stimulates type IV collagen synthesis and accelerates adipose conversion of 3T3-L1 cells. Exp Cell Res. 1990 Apr;187(2):309–314. doi: 10.1016/0014-4827(90)90096-s. [DOI] [PubMed] [Google Scholar]
- Poliard A., Lamblin D., Marie P. J., Buc-Caron M. H., Kellermann O. Commitment of the teratocarcinoma-derived mesodermal clone C1 towards terminal osteogenic differentiation. J Cell Sci. 1993 Oct;106(Pt 2):503–511. doi: 10.1242/jcs.106.2.503. [DOI] [PubMed] [Google Scholar]
- Reddi A. H. Bone and cartilage differentiation. Curr Opin Genet Dev. 1994 Oct;4(5):737–744. doi: 10.1016/0959-437x(94)90141-o. [DOI] [PubMed] [Google Scholar]
- Rhodes C., Doege K., Sasaki M., Yamada Y. Alternative splicing generates two different mRNA species for rat link protein. J Biol Chem. 1988 May 5;263(13):6063–6067. [PubMed] [Google Scholar]
- Ringold G. M., Chapman A. B., Knight D. M. Glucocorticoid control of developmentally regulated adipose genes. J Steroid Biochem. 1986 Jan;24(1):69–75. doi: 10.1016/0022-4731(86)90034-8. [DOI] [PubMed] [Google Scholar]
- Rosen V., Nove J., Song J. J., Thies R. S., Cox K., Wozney J. M. Responsiveness of clonal limb bud cell lines to bone morphogenetic protein 2 reveals a sequential relationship between cartilage and bone cell phenotypes. J Bone Miner Res. 1994 Nov;9(11):1759–1768. doi: 10.1002/jbmr.5650091113. [DOI] [PubMed] [Google Scholar]
- Solursh M. Differentiation of cartilage and bone. Curr Opin Cell Biol. 1989 Oct;1(5):989–994. doi: 10.1016/0955-0674(89)90070-7. [DOI] [PubMed] [Google Scholar]
- Spiegelman B. M., Frank M., Green H. Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. J Biol Chem. 1983 Aug 25;258(16):10083–10089. [PubMed] [Google Scholar]
- Stirpe N. S., Goetinck P. F. Gene regulation during cartilage differentiation: temporal and spatial expression of link protein and cartilage matrix protein in the developing limb. Development. 1989 Sep;107(1):23–33. doi: 10.1242/dev.107.1.23. [DOI] [PubMed] [Google Scholar]
- Strauss P. G., Closs E. I., Schmidt J., Erfle V. Gene expression during osteogenic differentiation in mandibular condyles in vitro. J Cell Biol. 1990 Apr;110(4):1369–1378. doi: 10.1083/jcb.110.4.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stubbs L., Lui V. C., Ng L. J., Cheah K. S. The alpha 2(XI) collagen gene lies within 8 kb of Pb in the proximal portion of the murine major histocompatibility complex. Mamm Genome. 1993;4(2):95–103. doi: 10.1007/BF00290433. [DOI] [PubMed] [Google Scholar]
- Tacchetti C., Quarto R., Nitsch L., Hartmann D. J., Cancedda R. In vitro morphogenesis of chick embryo hypertrophic cartilage. J Cell Biol. 1987 Aug;105(2):999–1006. doi: 10.1083/jcb.105.2.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takano T., Takigawa M., Suzuki F. Stimulation by glucocorticoids of the differentiated phenotype of chondrocytes and the proliferation of rabbit costal chondrocytes in culture. J Biochem. 1985 Apr;97(4):1093–1100. doi: 10.1093/oxfordjournals.jbchem.a135153. [DOI] [PubMed] [Google Scholar]
- Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development. 1988 Apr;102(4):639–655. doi: 10.1242/dev.102.4.639. [DOI] [PubMed] [Google Scholar]
- Taylor S. M., Jones P. A. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 1979 Aug;17(4):771–779. doi: 10.1016/0092-8674(79)90317-9. [DOI] [PubMed] [Google Scholar]
- Thorogood P. The developmental specification of the vertebrate skull. Development. 1988;103 (Suppl):141–153. doi: 10.1242/dev.103.Supplement.141. [DOI] [PubMed] [Google Scholar]
- Tschan T., Böhme K., Conscience-Egli M., Zenke G., Winterhalter K. H., Bruckner P. Autocrine or paracrine transforming growth factor-beta modulates the phenotype of chick embryo sternal chondrocytes in serum-free agarose culture. J Biol Chem. 1993 Mar 5;268(7):5156–5161. [PubMed] [Google Scholar]
- Wang E. A., Israel D. I., Kelly S., Luxenberg D. P. Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells. Growth Factors. 1993;9(1):57–71. doi: 10.3109/08977199308991582. [DOI] [PubMed] [Google Scholar]
- Wang Z. Q., Grigoriadis A. E., Wagner E. F. Stable murine chondrogenic cell lines derived from c-fos-induced cartilage tumors. J Bone Miner Res. 1993 Jul;8(7):839–847. doi: 10.1002/jbmr.5650080710. [DOI] [PubMed] [Google Scholar]
- Wolf C., Thisse C., Stoetzel C., Thisse B., Gerlinger P., Perrin-Schmitt F. The M-twist gene of Mus is expressed in subsets of mesodermal cells and is closely related to the Xenopus X-twi and the Drosophila twist genes. Dev Biol. 1991 Feb;143(2):363–373. doi: 10.1016/0012-1606(91)90086-i. [DOI] [PubMed] [Google Scholar]
- Wood A., Ashhurst D. E., Corbett A., Thorogood P. The transient expression of type II collagen at tissue interfaces during mammalian craniofacial development. Development. 1991 Apr;111(4):955–968. doi: 10.1242/dev.111.4.955. [DOI] [PubMed] [Google Scholar]
- Yamaguchi A., Kahn A. J. Clonal osteogenic cell lines express myogenic and adipocytic developmental potential. Calcif Tissue Int. 1991 Sep;49(3):221–225. doi: 10.1007/BF02556122. [DOI] [PubMed] [Google Scholar]
- Yoon K. G., Rutledge S. J., Buenaga R. F., Rodan G. A. Characterization of the rat osteocalcin gene: stimulation of promoter activity by 1,25-dihydroxyvitamin D3. Biochemistry. 1988 Nov 15;27(23):8521–8526. doi: 10.1021/bi00423a003. [DOI] [PubMed] [Google Scholar]
- von der Mark K., Gauss V., von der Mark H., Müller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature. 1977 Jun 9;267(5611):531–532. doi: 10.1038/267531a0. [DOI] [PubMed] [Google Scholar]