Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Sep 2;130(6):1307–1318. doi: 10.1083/jcb.130.6.1307

Different sensitivity to wortmannin of two vacuolar sorting signals indicates the presence of distinct sorting machineries in tobacco cells

PMCID: PMC2120585  PMID: 7559754

Abstract

Vacuolar matrix proteins in plant cells are sorted from the secretory pathway to the vacuoles at the Golgi apparatus. Previously, we reported that the NH2-terminal propeptide (NTPP) of the sporamin precursor and the COOH-terminal propeptide (CTPP) of the barley lectin precursor contain information for vacuolar sorting. To analyze whether these propeptides are interchangeable, we expressed constructs consisting of wild-type or mutated NTPP with the mature part of barley lectin and sporamin with CTPP and mutated NTPP in tobacco BY-2 cells. The vacuolar localization of these constructs indicated that the signals were interchangeable. We next analyzed the effect of wortmannin, a specific inhibitor of mammalian phosphatidylinositol (PI) 3-kinase on vacuolar delivery by NTPP and CTPP in tobacco cells. Pulse-chase analysis indicated that 33 microM wortmannin caused almost complete inhibition of CTPP-mediated transport to the vacuoles, while NTPP-mediated transport displayed almost no sensitivity to wortmannin at this concentration. This indicates that there are at least two different mechanisms for vacuolar sorting in tobacco cells, and the CTPP-mediated pathway is sensitive to wortmannin. We compared the dose dependencies of wortmannin on the inhibition of CTPP-mediated vacuolar delivery of proteins and on the inhibition of the synthesis of phospholipids in tobacco cells. Wortmannin inhibited PI 3- and PI 4-kinase activities and phospholipid synthesis. Missorting caused by wortmannin displays a dose dependency that is similar to the dose dependency for the inhibition of synthesis of PI 4-phosphate and major phospholipids. This is different, however, than the inhibition of synthesis of PI 3- phosphate. Thus, the synthesis of phospholipids could be involved in CTPP-mediated vacuolar transport.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arcaro A., Wymann M. P. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J. 1993 Dec 1;296(Pt 2):297–301. doi: 10.1042/bj2960297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bednarek S. Y., Raikhel N. V. Intracellular trafficking of secretory proteins. Plant Mol Biol. 1992 Oct;20(1):133–150. doi: 10.1007/BF00029156. [DOI] [PubMed] [Google Scholar]
  3. Bednarek S. Y., Raikhel N. V. The barley lectin carboxyl-terminal propeptide is a vacuolar protein sorting determinant in plants. Plant Cell. 1991 Nov;3(11):1195–1206. doi: 10.1105/tpc.3.11.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bednarek S. Y., Wilkins T. A., Dombrowski J. E., Raikhel N. V. A carboxyl-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell. 1990 Dec;2(12):1145–1155. doi: 10.1105/tpc.2.12.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Del Vecchio R. L., Pilch P. F. Phosphatidylinositol 4-kinase is a component of glucose transporter (GLUT 4)-containing vesicles. J Biol Chem. 1991 Jul 15;266(20):13278–13283. [PubMed] [Google Scholar]
  6. Dombrowski J. E., Schroeder M. R., Bednarek S. Y., Raikhel N. V. Determination of the functional elements within the vacuolar targeting signal of barley lectin. Plant Cell. 1993 May;5(5):587–596. doi: 10.1105/tpc.5.5.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Drøbak B. K. The plant phosphoinositide system. Biochem J. 1992 Dec 15;288(Pt 3):697–712. doi: 10.1042/bj2880697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fukuda Y., Ohme M., Shinshi H. Gene structure and expression of a tobacco endochitinase gene in suspension-cultured tobacco cells. Plant Mol Biol. 1991 Jan;16(1):1–10. doi: 10.1007/BF00017912. [DOI] [PubMed] [Google Scholar]
  9. Galili G., Altschuler Y., Levanony H. Assembly and transport of seed storage proteins. Trends Cell Biol. 1993 Dec;3(12):437–442. doi: 10.1016/0962-8924(93)90033-w. [DOI] [PubMed] [Google Scholar]
  10. Gomez L., Chrispeels M. J. Tonoplast and Soluble Vacuolar Proteins Are Targeted by Different Mechanisms. Plant Cell. 1993 Sep;5(9):1113–1124. doi: 10.1105/tpc.5.9.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Herskovits J. S., Burgess C. C., Obar R. A., Vallee R. B. Effects of mutant rat dynamin on endocytosis. J Cell Biol. 1993 Aug;122(3):565–578. doi: 10.1083/jcb.122.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holwerda B. C., Padgett H. S., Rogers J. C. Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell. 1992 Mar;4(3):307–318. doi: 10.1105/tpc.4.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hong Z., Verma D. P. A phosphatidylinositol 3-kinase is induced during soybean nodule organogenesis and is associated with membrane proliferation. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9617–9621. doi: 10.1073/pnas.91.20.9617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ishikawa A., Ohta S., Matsuoka K., Hattori T., Nakamura K. A family of potato genes that encode Kunitz-type proteinase inhibitors: structural comparisons and differential expression. Plant Cell Physiol. 1994 Mar;35(2):303–312. [PubMed] [Google Scholar]
  15. Joly M., Kazlauskas A., Fay F. S., Corvera S. Disruption of PDGF receptor trafficking by mutation of its PI-3 kinase binding sites. Science. 1994 Feb 4;263(5147):684–687. doi: 10.1126/science.8303278. [DOI] [PubMed] [Google Scholar]
  16. Kirsch T., Paris N., Butler J. M., Beevers L., Rogers J. C. Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3403–3407. doi: 10.1073/pnas.91.8.3403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kornfeld S., Mellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989;5:483–525. doi: 10.1146/annurev.cb.05.110189.002411. [DOI] [PubMed] [Google Scholar]
  18. Kotani K., Yonezawa K., Hara K., Ueda H., Kitamura Y., Sakaue H., Ando A., Chavanieu A., Calas B., Grigorescu F. Involvement of phosphoinositide 3-kinase in insulin- or IGF-1-induced membrane ruffling. EMBO J. 1994 May 15;13(10):2313–2321. doi: 10.1002/j.1460-2075.1994.tb06515.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lerner D. R., Raikhel N. V. Cloning and characterization of root-specific barley lectin. Plant Physiol. 1989 Sep;91(1):124–129. doi: 10.1104/pp.91.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matsuoka K., Matsumoto S., Hattori T., Machida Y., Nakamura K. Vacuolar targeting and posttranslational processing of the precursor to the sweet potato tuberous root storage protein in heterologous plant cells. J Biol Chem. 1990 Nov 15;265(32):19750–19757. [PubMed] [Google Scholar]
  21. Matsuoka K., Nakamura K. Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):834–838. doi: 10.1073/pnas.88.3.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. McGee T. P., Skinner H. B., Whitters E. A., Henry S. A., Bankaitis V. A. A phosphatidylinositol transfer protein controls the phosphatidylcholine content of yeast Golgi membranes. J Cell Biol. 1994 Feb;124(3):273–287. doi: 10.1083/jcb.124.3.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Melchers L. S., Sela-Buurlage M. B., Vloemans S. A., Woloshuk C. P., Van Roekel J. S., Pen J., van den Elzen P. J., Cornelissen B. J. Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and beta-1,3-glucanase in transgenic plants. Plant Mol Biol. 1993 Feb;21(4):583–593. doi: 10.1007/BF00014542. [DOI] [PubMed] [Google Scholar]
  24. Nakamura K., Matsuoka K. Protein targeting to the vacuole in plant cells. Plant Physiol. 1993 Jan;101(1):1–5. doi: 10.1104/pp.101.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nakanishi S., Kakita S., Takahashi I., Kawahara K., Tsukuda E., Sano T., Yamada K., Yoshida M., Kase H., Matsuda Y. Wortmannin, a microbial product inhibitor of myosin light chain kinase. J Biol Chem. 1992 Feb 5;267(4):2157–2163. [PubMed] [Google Scholar]
  26. Neuhaus J. M., Pietrzak M., Boller T. Mutation analysis of the C-terminal vacuolar targeting peptide of tobacco chitinase: low specificity of the sorting system, and gradual transition between intracellular retention and secretion into the extracellular space. Plant J. 1994 Jan;5(1):45–54. doi: 10.1046/j.1365-313x.1994.5010045.x. [DOI] [PubMed] [Google Scholar]
  27. Neuhaus J. M., Sticher L., Meins F., Jr, Boller T. A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10362–10366. doi: 10.1073/pnas.88.22.10362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ohme-Takagi M., Shinshi H. Structure and expression of a tobacco beta-1,3-glucanase gene. Plant Mol Biol. 1990 Dec;15(6):941–946. doi: 10.1007/BF00039434. [DOI] [PubMed] [Google Scholar]
  29. Onesti S., Brick P., Blow D. M. Crystal structure of a Kunitz-type trypsin inhibitor from Erythrina caffra seeds. J Mol Biol. 1991 Jan 5;217(1):153–176. doi: 10.1016/0022-2836(91)90618-g. [DOI] [PubMed] [Google Scholar]
  30. Otsu M., Hiles I., Gout I., Fry M. J., Ruiz-Larrea F., Panayotou G., Thompson A., Dhand R., Hsuan J., Totty N. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell. 1991 Apr 5;65(1):91–104. doi: 10.1016/0092-8674(91)90411-q. [DOI] [PubMed] [Google Scholar]
  31. Raikhel N. V., Lerner D. R. Expression and regulation of lectin genes in cereals and rice. Dev Genet. 1991;12(4):255–260. doi: 10.1002/dvg.1020120402. [DOI] [PubMed] [Google Scholar]
  32. Rothman J. H., Yamashiro C. T., Kane P. M., Stevens T. H. Protein targeting to the yeast vacuole. Trends Biochem Sci. 1989 Aug;14(8):347–350. doi: 10.1016/0968-0004(89)90170-9. [DOI] [PubMed] [Google Scholar]
  33. Saalbach G., Jung R., Kunze G., Saalbach I., Adler K., Müntz K. Different legumin protein domains act as vacuolar targeting signals. Plant Cell. 1991 Jul;3(7):695–708. doi: 10.1105/tpc.3.7.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Schroeder M. R., Borkhsenious O. N., Matsuoka K., Nakamura K., Raikhel N. V. Colocalization of barley lectin and sporamin in vacuoles of transgenic tobacco plants. Plant Physiol. 1993 Feb;101(2):451–458. doi: 10.1104/pp.101.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schu P. V., Takegawa K., Fry M. J., Stack J. H., Waterfield M. D., Emr S. D. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science. 1993 Apr 2;260(5104):88–91. doi: 10.1126/science.8385367. [DOI] [PubMed] [Google Scholar]
  37. Shinshi H., Wenzler H., Neuhaus J. M., Felix G., Hofsteenge J., Meins F. Evidence for N- and C-terminal processing of a plant defense-related enzyme: Primary structure of tobacco prepro-beta-1,3-glucanase. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5541–5545. doi: 10.1073/pnas.85.15.5541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stack J. H., Emr S. D. Vps34p required for yeast vacuolar protein sorting is a multiple specificity kinase that exhibits both protein kinase and phosphatidylinositol-specific PI 3-kinase activities. J Biol Chem. 1994 Dec 16;269(50):31552–31562. [PubMed] [Google Scholar]
  39. Stack J. H., Herman P. K., Schu P. V., Emr S. D. A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J. 1993 May;12(5):2195–2204. doi: 10.1002/j.1460-2075.1993.tb05867.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sticher L., Hofsteenge J., Milani A., Neuhaus J. M., Meins F., Jr Vacuolar chitinases of tobacco: a new class of hydroxyproline-containing proteins. Science. 1992 Jul 31;257(5070):655–657. doi: 10.1126/science.1496378. [DOI] [PubMed] [Google Scholar]
  41. Sticher L., Hofsteenge J., Neuhaus J. M., Boller T., Meins F., Jr Posttranslational processing of a new class of hydroxyproline-containing proteins. Prolyl hydroxylation and C-terminal cleavage of tobacco (Nicotiana tabacum) vacuolar chitinase. Plant Physiol. 1993 Apr;101(4):1239–1247. doi: 10.1104/pp.101.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thelen M., Wymann M. P., Langen H. Wortmannin binds specifically to 1-phosphatidylinositol 3-kinase while inhibiting guanine nucleotide-binding protein-coupled receptor signaling in neutrophil leukocytes. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4960–4964. doi: 10.1073/pnas.91.11.4960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Tuma P. L., Stachniak M. C., Collins C. A. Activation of dynamin GTPase by acidic phospholipids and endogenous rat brain vesicles. J Biol Chem. 1993 Aug 15;268(23):17240–17246. [PubMed] [Google Scholar]
  44. Walsh J. P., Caldwell K. K., Majerus P. W. Formation of phosphatidylinositol 3-phosphate by isomerization from phosphatidylinositol 4-phosphate. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9184–9187. doi: 10.1073/pnas.88.20.9184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Welters P., Takegawa K., Emr S. D., Chrispeels M. J. AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11398–11402. doi: 10.1073/pnas.91.24.11398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wilkins T. A., Bednarek S. Y., Raikhel N. V. Role of propeptide glycan in post-translational processing and transport of barley lectin to vacuoles in transgenic tobacco. Plant Cell. 1990 Apr;2(4):301–313. doi: 10.1105/tpc.2.4.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Woscholski R., Kodaki T., McKinnon M., Waterfield M. D., Parker P. J. A comparison of demethoxyviridin and wortmannin as inhibitors of phosphatidylinositol 3-kinase. FEBS Lett. 1994 Apr 4;342(2):109–114. doi: 10.1016/0014-5793(94)80482-6. [DOI] [PubMed] [Google Scholar]
  48. Yano H., Nakanishi S., Kimura K., Hanai N., Saitoh Y., Fukui Y., Nonomura Y., Matsuda Y. Inhibition of histamine secretion by wortmannin through the blockade of phosphatidylinositol 3-kinase in RBL-2H3 cells. J Biol Chem. 1993 Dec 5;268(34):25846–25856. [PubMed] [Google Scholar]
  49. van der Bliek A. M., Redelmeier T. E., Damke H., Tisdale E. J., Meyerowitz E. M., Schmid S. L. Mutations in human dynamin block an intermediate stage in coated vesicle formation. J Cell Biol. 1993 Aug;122(3):553–563. doi: 10.1083/jcb.122.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. von Figura K., Hasilik A. Lysosomal enzymes and their receptors. Annu Rev Biochem. 1986;55:167–193. doi: 10.1146/annurev.bi.55.070186.001123. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES