Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Oct 1;131(1):7–17. doi: 10.1083/jcb.131.1.7

A postprophase topoisomerase II-dependent chromatid core separation step in the formation of metaphase chromosomes

PMCID: PMC2120606  PMID: 7559788

Abstract

Metaphase chromatids are believed to consist of loops of chromatin anchored to a central scaffold, of which a major component is the decatenatory enzyme DNA topoisomerase II. Silver impregnation selectively stains an axial element of metaphase and anaphase chromatids; but we find that in earlier stages of mitosis, silver staining reveals an initially single, folded midline structure, which separates at prometaphase to form two chromatid axes. Inhibition of topoisomerase II prevents this separation, and also prevents the contraction of chromatids that occurs when metaphase is arrested. Immunolocalization of topoisomerase II alpha reveals chromatid cores analogous to those seen with silver staining. We conclude that the chromatid cores in early mitosis form a single structure, constrained by DNA catenations, which must separate before metaphase chromatids can be resolved.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi Y., Luke M., Laemmli U. K. Chromosome assembly in vitro: topoisomerase II is required for condensation. Cell. 1991 Jan 11;64(1):137–148. doi: 10.1016/0092-8674(91)90215-k. [DOI] [PubMed] [Google Scholar]
  2. Boy de la Tour E., Laemmli U. K. The metaphase scaffold is helically folded: sister chromatids have predominantly opposite helical handedness. Cell. 1988 Dec 23;55(6):937–944. doi: 10.1016/0092-8674(88)90239-5. [DOI] [PubMed] [Google Scholar]
  3. Buchenau P., Saumweber H., Arndt-Jovin D. J. Consequences of topoisomerase II inhibition in early embryogenesis of Drosophila revealed by in vivo confocal laser scanning microscopy. J Cell Sci. 1993 Apr;104(Pt 4):1175–1185. doi: 10.1242/jcs.104.4.1175. [DOI] [PubMed] [Google Scholar]
  4. Clarke D. J., Johnson R. T., Downes C. S. Topoisomerase II inhibition prevents anaphase chromatid segregation in mammalian cells independently of the generation of DNA strand breaks. J Cell Sci. 1993 Jun;105(Pt 2):563–569. doi: 10.1242/jcs.105.2.563. [DOI] [PubMed] [Google Scholar]
  5. Cook P. R. The nucleoskeleton and the topology of replication. Cell. 1991 Aug 23;66(4):627–635. doi: 10.1016/0092-8674(91)90109-c. [DOI] [PubMed] [Google Scholar]
  6. Denton T. E., Brooke W. R., Howell W. M. A technique for the simultaneous staining of both nucleolar organizer regions and kinetochores of human chromosomes with silver. Stain Technol. 1977 Nov;52(6):311–313. doi: 10.3109/10520297709116804. [DOI] [PubMed] [Google Scholar]
  7. DiNardo S., Voelkel K., Sternglanz R. DNA topoisomerase II mutant of Saccharomyces cerevisiae: topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc Natl Acad Sci U S A. 1984 May;81(9):2616–2620. doi: 10.1073/pnas.81.9.2616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Downes C. S., Clarke D. J., Mullinger A. M., Giménez-Abián J. F., Creighton A. M., Johnson R. T. A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells/. Nature. 1994 Dec 1;372(6505):467–470. doi: 10.1038/372467a0. [DOI] [PubMed] [Google Scholar]
  9. Downes C. S., Unwin D. M., Northfield R. G., Berry M. J. Automatic nitrous oxide synchronization of mitotic human cell cultures. Anal Biochem. 1987 Aug 15;165(1):56–58. doi: 10.1016/0003-2697(87)90200-4. [DOI] [PubMed] [Google Scholar]
  10. Earnshaw W. C., Halligan B., Cooke C. A., Heck M. M., Liu L. F. Topoisomerase II is a structural component of mitotic chromosome scaffolds. J Cell Biol. 1985 May;100(5):1706–1715. doi: 10.1083/jcb.100.5.1706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Earnshaw W. C., Heck M. M. Localization of topoisomerase II in mitotic chromosomes. J Cell Biol. 1985 May;100(5):1716–1725. doi: 10.1083/jcb.100.5.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Earnshaw W. C., Laemmli U. K. Silver staining the chromosome scaffold. Chromosoma. 1984;89(3):186–192. doi: 10.1007/BF00294997. [DOI] [PubMed] [Google Scholar]
  13. Gasser S. M., Laemmli U. K. The organisation of chromatin loops: characterization of a scaffold attachment site. EMBO J. 1986 Mar;5(3):511–518. doi: 10.1002/j.1460-2075.1986.tb04240.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goodpasture C., Bloom S. E. Visualization of nucleolar organizer regions im mammalian chromosomes using silver staining. Chromosoma. 1975 Nov 20;53(1):37–50. doi: 10.1007/BF00329389. [DOI] [PubMed] [Google Scholar]
  15. Gorbsky G. J. Cell cycle progression and chromosome segregation in mammalian cells cultured in the presence of the topoisomerase II inhibitors ICRF-187 [(+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane; ADR-529] and ICRF-159 (Razoxane). Cancer Res. 1994 Feb 15;54(4):1042–1048. [PubMed] [Google Scholar]
  16. Hirano T., Mitchison T. J. Cell cycle control of higher-order chromatin assembly around naked DNA in vitro. J Cell Biol. 1991 Dec;115(6):1479–1489. doi: 10.1083/jcb.115.6.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hirano T., Mitchison T. J. Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled in Xenopus egg extracts. J Cell Biol. 1993 Feb;120(3):601–612. doi: 10.1083/jcb.120.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holm C. Coming undone: how to untangle a chromosome. Cell. 1994 Jul 1;77(7):955–957. doi: 10.1016/0092-8674(94)90433-2. [DOI] [PubMed] [Google Scholar]
  19. Holm C., Stearns T., Botstein D. DNA topoisomerase II must act at mitosis to prevent nondisjunction and chromosome breakage. Mol Cell Biol. 1989 Jan;9(1):159–168. doi: 10.1128/mcb.9.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Homberger H. P. Bent DNA is a structural feature of scaffold-attached regions in Drosophila melanogaster interphase nuclei. Chromosoma. 1989 Aug;98(2):99–104. doi: 10.1007/BF00291044. [DOI] [PubMed] [Google Scholar]
  21. Howell W. M., Hsu T. C. Chromosome core structure revealed by silver staining. Chromosoma. 1979 Jun 21;73(1):61–66. doi: 10.1007/BF00294845. [DOI] [PubMed] [Google Scholar]
  22. Jan K. Y., Tzeng Y. J., Lee T. C. Opposite staining effect of two silver-staining techniques on sister chromatids. Exp Cell Res. 1985 Jul;159(1):55–62. doi: 10.1016/s0014-4827(85)80037-9. [DOI] [PubMed] [Google Scholar]
  23. Johnson R. T., Rao P. N. Mammalian cell fusion: induction of premature chromosome condensation in interphase nuclei. Nature. 1970 May 23;226(5247):717–722. doi: 10.1038/226717a0. [DOI] [PubMed] [Google Scholar]
  24. Koshland D., Hartwell L. H. The structure of sister minichromosome DNA before anaphase in Saccharomyces cerevisiae. Science. 1987 Dec 18;238(4834):1713–1716. doi: 10.1126/science.3317838. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U. K., Käs E., Poljak L., Adachi Y. Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains. Curr Opin Genet Dev. 1992 Apr;2(2):275–285. doi: 10.1016/s0959-437x(05)80285-0. [DOI] [PubMed] [Google Scholar]
  26. Lawrence J. B., Singer R. H., McNeil J. A. Interphase and metaphase resolution of different distances within the human dystrophin gene. Science. 1990 Aug 24;249(4971):928–932. doi: 10.1126/science.2203143. [DOI] [PubMed] [Google Scholar]
  27. MAZIA D. SYNTHETIC ACTIVITIES LEADING TO MITOSIS. J Cell Physiol. 1963 Oct;62:SUPPL1–SUPPL1:140. doi: 10.1002/jcp.1030620412. [DOI] [PubMed] [Google Scholar]
  28. Ma X., Saitoh N., Curtis P. J. Purification and characterization of a nuclear DNA-binding factor complex containing topoisomerase II and chromosome scaffold protein 2. J Biol Chem. 1993 Mar 25;268(9):6182–6188. [PubMed] [Google Scholar]
  29. Mirkovitch J., Mirault M. E., Laemmli U. K. Organization of the higher-order chromatin loop: specific DNA attachment sites on nuclear scaffold. Cell. 1984 Nov;39(1):223–232. doi: 10.1016/0092-8674(84)90208-3. [DOI] [PubMed] [Google Scholar]
  30. Mullinger A. M., Johnson R. T. The organization of supercoiled DNA from human chromosomes. J Cell Sci. 1979 Aug;38:369–389. doi: 10.1242/jcs.38.1.369. [DOI] [PubMed] [Google Scholar]
  31. Negri C., Scovassi A. I., Braghetti A., Guano F., Astaldi Ricotti G. C. DNA topoisomerase II beta: stability and distribution in different animal cells in comparison to DNA topoisomerase I and II alpha. Exp Cell Res. 1993 May;206(1):128–133. doi: 10.1006/excr.1993.1128. [DOI] [PubMed] [Google Scholar]
  32. Newport J., Spann T. Disassembly of the nucleus in mitotic extracts: membrane vesicularization, lamin disassembly, and chromosome condensation are independent processes. Cell. 1987 Jan 30;48(2):219–230. doi: 10.1016/0092-8674(87)90425-9. [DOI] [PubMed] [Google Scholar]
  33. Ochs R. L., Busch H. Further evidence that phosphoprotein C23 (110 kD/pI 5.1) is the nucleolar silver staining protein. Exp Cell Res. 1984 May;152(1):260–265. doi: 10.1016/0014-4827(84)90251-9. [DOI] [PubMed] [Google Scholar]
  34. Paulson J. R., Laemmli U. K. The structure of histone-depleted metaphase chromosomes. Cell. 1977 Nov;12(3):817–828. doi: 10.1016/0092-8674(77)90280-x. [DOI] [PubMed] [Google Scholar]
  35. Pillidge L., Downes C. S., Johnson R. T. Defective post-replication recovery and u.v. sensitivity in a simian virus 40-transformed Indian muntjac cell line. Int J Radiat Biol Relat Stud Phys Chem Med. 1986 Jul;50(1):119–136. doi: 10.1080/09553008614550501. [DOI] [PubMed] [Google Scholar]
  36. Rattner J. B., Lin C. C. Radial loops and helical coils coexist in metaphase chromosomes. Cell. 1985 Aug;42(1):291–296. doi: 10.1016/s0092-8674(85)80124-0. [DOI] [PubMed] [Google Scholar]
  37. Roca J., Ishida R., Berger J. M., Andoh T., Wang J. C. Antitumor bisdioxopiperazines inhibit yeast DNA topoisomerase II by trapping the enzyme in the form of a closed protein clamp. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1781–1785. doi: 10.1073/pnas.91.5.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rowley R., Kort L. Novobiocin, nalidixic acid, etoposide, and 4'-(9-acridinylamino)methanesulfon-m-anisidide effects on G2 and mitotic Chinese hamster ovary cell progression. Cancer Res. 1989 Sep 1;49(17):4752–4757. [PubMed] [Google Scholar]
  39. Saitoh N., Goldberg I. G., Wood E. R., Earnshaw W. C. ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J Cell Biol. 1994 Oct;127(2):303–318. doi: 10.1083/jcb.127.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Saitoh Y., Laemmli U. K. Metaphase chromosome structure: bands arise from a differential folding path of the highly AT-rich scaffold. Cell. 1994 Feb 25;76(4):609–622. doi: 10.1016/0092-8674(94)90502-9. [DOI] [PubMed] [Google Scholar]
  41. Sedat J., Manuelidis L. A direct approach to the structure of eukaryotic chromosomes. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):331–350. doi: 10.1101/sqb.1978.042.01.035. [DOI] [PubMed] [Google Scholar]
  42. Shamu C. E., Murray A. W. Sister chromatid separation in frog egg extracts requires DNA topoisomerase II activity during anaphase. J Cell Biol. 1992 Jun;117(5):921–934. doi: 10.1083/jcb.117.5.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Swedlow J. R., Sedat J. W., Agard D. A. Multiple chromosomal populations of topoisomerase II detected in vivo by time-lapse, three-dimensional wide-field microscopy. Cell. 1993 Apr 9;73(1):97–108. doi: 10.1016/0092-8674(93)90163-k. [DOI] [PubMed] [Google Scholar]
  44. Taagepera S., Rao P. N., Drake F. H., Gorbsky G. J. DNA topoisomerase II alpha is the major chromosome protein recognized by the mitotic phosphoprotein antibody MPM-2. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8407–8411. doi: 10.1073/pnas.90.18.8407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Uemura T., Ohkura H., Adachi Y., Morino K., Shiozaki K., Yanagida M. DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell. 1987 Sep 11;50(6):917–925. doi: 10.1016/0092-8674(87)90518-6. [DOI] [PubMed] [Google Scholar]
  46. Woessner R. D., Mattern M. R., Mirabelli C. K., Johnson R. K., Drake F. H. Proliferation- and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. Cell Growth Differ. 1991 Apr;2(4):209–214. [PubMed] [Google Scholar]
  47. Wood E. R., Earnshaw W. C. Mitotic chromatin condensation in vitro using somatic cell extracts and nuclei with variable levels of endogenous topoisomerase II. J Cell Biol. 1990 Dec;111(6 Pt 2):2839–2850. doi: 10.1083/jcb.111.6.2839. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES