Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Dec 1;131(5):1231–1242. doi: 10.1083/jcb.131.5.1231

Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis

PMCID: PMC2120629  PMID: 8522586

Abstract

Ezrin is a component of the microvillus cytoskeleton of a variety of polarized epithelial cells and is believed to function as a membrane- cytoskeletal linker. In this study, we isolated microvilli from human placental syncytiotrophoblast as a model system for biochemical analysis of ezrin function. In contrast to intestinal microvilli, ezrin is a major protein component of placental microvilli, comprising approximately 5% of the total protein mass and present at about one quarter of the molar abundance of actin. Gel filtration and chemical cross-linking studies demonstrated that ezrin exists mainly in the form of noncovalent dimers and higher order oligomers in extracts of placental microvilli. A novel form of ezrin, apparently representing covalently cross-linked adducts, was present as a relatively minor constituent of placental microvilli. Both oligomers and adducts remained associated with the detergent-insoluble cytoskeleton, indicating a tight interaction with actin filaments. Moreover, stimulation of human A431 carcinoma cells with EGF induces the rapid formation of ezrin oligomers in vivo, thus identifying a signal transduction pathway involving ezrin oligomerization coincident with microvillus assembly. In addition to time course studies, experiments with tyrosine kinase and tyrosine phosphatase inhibitors revealed a correlation between the phosphorylation of ezrin on tyrosine and the onset of oligomer formation, consistent with the possibility that phosphorylation of ezrin might be required for the generation of stable oligomers. Based on these observations, a model for the assembly of cell surface structures is proposed.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Algrain M., Turunen O., Vaheri A., Louvard D., Arpin M. Ezrin contains cytoskeleton and membrane binding domains accounting for its proposed role as a membrane-cytoskeletal linker. J Cell Biol. 1993 Jan;120(1):129–139. doi: 10.1083/jcb.120.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amieva M. R., Wilgenbus K. K., Furthmayr H. Radixin is a component of hepatocyte microvilli in situ. Exp Cell Res. 1994 Jan;210(1):140–144. doi: 10.1006/excr.1994.1021. [DOI] [PubMed] [Google Scholar]
  3. Anderson R. A., Lovrien R. E. Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton. Nature. 1984 Feb 16;307(5952):655–658. doi: 10.1038/307655a0. [DOI] [PubMed] [Google Scholar]
  4. Anderson R. A., Marchesi V. T. Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide. Nature. 1985 Nov 21;318(6043):295–298. doi: 10.1038/318295a0. [DOI] [PubMed] [Google Scholar]
  5. Andréoli C., Martin M., Le Borgne R., Reggio H., Mangeat P. Ezrin has properties to self-associate at the plasma membrane. J Cell Sci. 1994 Sep;107(Pt 9):2509–2521. doi: 10.1242/jcs.107.9.2509. [DOI] [PubMed] [Google Scholar]
  6. Bachman E. S., McClay D. R. Characterization of moesin in the sea urchin Lytechinus variegatus: redistribution to the plasma membrane following fertilization is inhibited by cytochalasin B. J Cell Sci. 1995 Jan;108(Pt 1):161–171. doi: 10.1242/jcs.108.1.161. [DOI] [PubMed] [Google Scholar]
  7. Berryman M. A., Rodewald R. D. An enhanced method for post-embedding immunocytochemical staining which preserves cell membranes. J Histochem Cytochem. 1990 Feb;38(2):159–170. doi: 10.1177/38.2.1688894. [DOI] [PubMed] [Google Scholar]
  8. Berryman M., Franck Z., Bretscher A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J Cell Sci. 1993 Aug;105(Pt 4):1025–1043. doi: 10.1242/jcs.105.4.1025. [DOI] [PubMed] [Google Scholar]
  9. Booth A. G., Olaniyan R. O., Vanderpuye O. A. An improved method for the preparation of human placental syncytiotrophoblast microvilli. Placenta. 1980 Oct-Dec;1(4):327–336. doi: 10.1016/s0143-4004(80)80034-8. [DOI] [PubMed] [Google Scholar]
  10. Booth A. G., Vanderpuye O. A. Structure of human placental microvilli. Ciba Found Symp. 1983;95:180–194. doi: 10.1002/9780470720769.ch11. [DOI] [PubMed] [Google Scholar]
  11. Bretscher A. Microfilament structure and function in the cortical cytoskeleton. Annu Rev Cell Biol. 1991;7:337–374. doi: 10.1146/annurev.cb.07.110191.002005. [DOI] [PubMed] [Google Scholar]
  12. Bretscher A. Purification of an 80,000-dalton protein that is a component of the isolated microvillus cytoskeleton, and its localization in nonmuscle cells. J Cell Biol. 1983 Aug;97(2):425–432. doi: 10.1083/jcb.97.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bretscher A. Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor. J Cell Biol. 1989 Mar;108(3):921–930. doi: 10.1083/jcb.108.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Edwards H. C., Booth A. G. Calcium-sensitive, lipid-binding cytoskeletal proteins of the human placental microvillar region. J Cell Biol. 1987 Jul;105(1):303–311. doi: 10.1083/jcb.105.1.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Edwards K. A., Montague R. A., Shepard S., Edgar B. A., Erikson R. L., Kiehart D. P. Identification of Drosophila cytoskeletal proteins by induction of abnormal cell shape in fission yeast. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4589–4593. doi: 10.1073/pnas.91.10.4589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Egerton M., Burgess W. H., Chen D., Druker B. J., Bretscher A., Samelson L. E. Identification of ezrin as an 81-kDa tyrosine-phosphorylated protein in T cells. J Immunol. 1992 Sep 15;149(6):1847–1852. [PubMed] [Google Scholar]
  17. Fazioli F., Wong W. T., Ullrich S. J., Sakaguchi K., Appella E., Di Fiore P. P. The ezrin-like family of tyrosine kinase substrates: receptor-specific pattern of tyrosine phosphorylation and relationship to malignant transformation. Oncogene. 1993 May;8(5):1335–1345. [PubMed] [Google Scholar]
  18. Franck Z., Gary R., Bretscher A. Moesin, like ezrin, colocalizes with actin in the cortical cytoskeleton in cultured cells, but its expression is more variable. J Cell Sci. 1993 May;105(Pt 1):219–231. doi: 10.1242/jcs.105.1.219. [DOI] [PubMed] [Google Scholar]
  19. Fry D. W., Kraker A. J., McMichael A., Ambroso L. A., Nelson J. M., Leopold W. R., Connors R. W., Bridges A. J. A specific inhibitor of the epidermal growth factor receptor tyrosine kinase. Science. 1994 Aug 19;265(5175):1093–1095. doi: 10.1126/science.8066447. [DOI] [PubMed] [Google Scholar]
  20. Funayama N., Nagafuchi A., Sato N., Tsukita S., Tsukita S. Radixin is a novel member of the band 4.1 family. J Cell Biol. 1991 Nov;115(4):1039–1048. doi: 10.1083/jcb.115.4.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gary R., Bretscher A. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol Biol Cell. 1995 Aug;6(8):1061–1075. doi: 10.1091/mbc.6.8.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gary R., Bretscher A. Heterotypic and homotypic associations between ezrin and moesin, two putative membrane-cytoskeletal linking proteins. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10846–10850. doi: 10.1073/pnas.90.22.10846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gould K. L., Bretscher A., Esch F. S., Hunter T. cDNA cloning and sequencing of the protein-tyrosine kinase substrate, ezrin, reveals homology to band 4.1. EMBO J. 1989 Dec 20;8(13):4133–4142. doi: 10.1002/j.1460-2075.1989.tb08598.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gould K. L., Cooper J. A., Bretscher A., Hunter T. The protein-tyrosine kinase substrate, p81, is homologous to a chicken microvillar core protein. J Cell Biol. 1986 Feb;102(2):660–669. doi: 10.1083/jcb.102.2.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hansen K., Møller J. V. Application of two-dimensional gel analysis to identification and characterization of tyrosine phosphorylated substrates for growth factor receptors. Electrophoresis. 1993 Jan-Feb;14(1-2):112–126. doi: 10.1002/elps.1150140120. [DOI] [PubMed] [Google Scholar]
  26. Hanzel D., Reggio H., Bretscher A., Forte J. G., Mangeat P. The secretion-stimulated 80K phosphoprotein of parietal cells is ezrin, and has properties of a membrane cytoskeletal linker in the induced apical microvilli. EMBO J. 1991 Sep;10(9):2363–2373. doi: 10.1002/j.1460-2075.1991.tb07775.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Henry M. D., Gonzalez Agosti C., Solomon F. Molecular dissection of radixin: distinct and interdependent functions of the amino- and carboxy-terminal domains. J Cell Biol. 1995 May;129(4):1007–1022. doi: 10.1083/jcb.129.4.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Höfer D., Drenckhahn D. Molecular heterogeneity of the actin filament cytoskeleton associated with microvilli of photoreceptors, Müller's glial cells and pigment epithelial cells of the retina. Histochemistry. 1993 Jan;99(1):29–35. doi: 10.1007/BF00268017. [DOI] [PubMed] [Google Scholar]
  29. Ibnsouda S., Schweisguth F., de Billy G., Vincent A. Relationship between expression of serendipity alpha and cellularisation of the Drosophila embryo as revealed by interspecific transformation. Development. 1993 Oct;119(2):471–483. doi: 10.1242/dev.119.2.471. [DOI] [PubMed] [Google Scholar]
  30. Kamps M. P., Buss J. E., Sefton B. M. Rous sarcoma virus transforming protein lacking myristic acid phosphorylates known polypeptide substrates without inducing transformation. Cell. 1986 Apr 11;45(1):105–112. doi: 10.1016/0092-8674(86)90542-8. [DOI] [PubMed] [Google Scholar]
  31. Krieg J., Hunter T. Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J Biol Chem. 1992 Sep 25;267(27):19258–19265. [PubMed] [Google Scholar]
  32. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  33. Lankes W. T., Furthmayr H. Moesin: a member of the protein 4.1-talin-ezrin family of proteins. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8297–8301. doi: 10.1073/pnas.88.19.8297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lankes W. T., Schwartz-Albiez R., Furthmayr H. Cloning and sequencing of porcine moesin and radixin cDNA and identification of highly conserved domains. Biochim Biophys Acta. 1993 Dec 14;1216(3):479–482. doi: 10.1016/0167-4781(93)90018-9. [DOI] [PubMed] [Google Scholar]
  35. Marfatia S. M., Lue R. A., Branton D., Chishti A. H. In vitro binding studies suggest a membrane-associated complex between erythroid p55, protein 4.1, and glycophorin C. J Biol Chem. 1994 Mar 25;269(12):8631–8634. [PubMed] [Google Scholar]
  36. Martin M., Andréoli C., Sahuquet A., Montcourrier P., Algrain M., Mangeat P. Ezrin NH2-terminal domain inhibits the cell extension activity of the COOH-terminal domain. J Cell Biol. 1995 Mar;128(6):1081–1093. doi: 10.1083/jcb.128.6.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Mock K. K., Davey M., Stevenson M. P., Cottrell J. S. The integration of mass spectrometry into the biochemistry laboratory. Biochem Soc Trans. 1991 Nov;19(4):948–953. doi: 10.1042/bst0190948. [DOI] [PubMed] [Google Scholar]
  38. Närvänen A. Purification, from cultured human choriocarcinoma cells, of a 75000-Mr protein reacting with antibodies to a synthetic peptide based on a cloned human endogenous provirus nucleotide sequence. Biochem J. 1985 Oct 1;231(1):53–57. doi: 10.1042/bj2310053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Osherov N., Levitzki A. Epidermal-growth-factor-dependent activation of the src-family kinases. Eur J Biochem. 1994 Nov 1;225(3):1047–1053. doi: 10.1111/j.1432-1033.1994.1047b.x. [DOI] [PubMed] [Google Scholar]
  40. Pakkanen R., Hedman K., Turunen O., Wahlström T., Vaheri A. Microvillus-specific Mr 75,000 plasma membrane protein of human choriocarcinoma cells. J Histochem Cytochem. 1987 Aug;35(8):809–816. doi: 10.1177/35.8.3298422. [DOI] [PubMed] [Google Scholar]
  41. Pakkanen R. Immunofluorescent and immunochemical evidence for the expression of cytovillin in the microvilli of a wide range of cultured human cells. J Cell Biochem. 1988 Sep;38(1):65–75. doi: 10.1002/jcb.240380107. [DOI] [PubMed] [Google Scholar]
  42. Pakkanen R., Vaheri A. Cytovillin and other microvillar proteins of human choriocarcinoma cells. J Cell Biochem. 1989 Sep;41(1):1–12. doi: 10.1002/jcb.240410102. [DOI] [PubMed] [Google Scholar]
  43. Pakkanen R., von Bonsdorff C. H., Turunen O., Wahlström T., Vaheri A. Redistribution of Mr 75,000 plasma membrane protein, cytovillin, into newly formed microvilli in herpes simplex and Semliki Forest virus infected human embryonal fibroblasts. Eur J Cell Biol. 1988 Aug;46(3):435–443. [PubMed] [Google Scholar]
  44. Pasternack G. R., Anderson R. A., Leto T. L., Marchesi V. T. Interactions between protein 4.1 and band 3. An alternative binding site for an element of the membrane skeleton. J Biol Chem. 1985 Mar 25;260(6):3676–3683. [PubMed] [Google Scholar]
  45. Pearse B. M. Coated vesicles from human placenta carry ferritin, transferrin, and immunoglobulin G. Proc Natl Acad Sci U S A. 1982 Jan;79(2):451–455. doi: 10.1073/pnas.79.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pestonjamasp K., Amieva M. R., Strassel C. P., Nauseef W. M., Furthmayr H., Luna E. J. Moesin, ezrin, and p205 are actin-binding proteins associated with neutrophil plasma membranes. Mol Biol Cell. 1995 Mar;6(3):247–259. doi: 10.1091/mbc.6.3.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sato N., Funayama N., Nagafuchi A., Yonemura S., Tsukita S., Tsukita S. A gene family consisting of ezrin, radixin and moesin. Its specific localization at actin filament/plasma membrane association sites. J Cell Sci. 1992 Sep;103(Pt 1):131–143. doi: 10.1242/jcs.103.1.131. [DOI] [PubMed] [Google Scholar]
  48. Shuster C. B., Herman I. M. Indirect association of ezrin with F-actin: isoform specificity and calcium sensitivity. J Cell Biol. 1995 Mar;128(5):837–848. doi: 10.1083/jcb.128.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Soroka C. J., Chew C. S., Hanzel D. K., Smolka A., Modlin I. M., Goldenring J. R. Characterization of membrane and cytoskeletal compartments in cultured parietal cells: immunofluorescence and confocal microscopic examination. Eur J Cell Biol. 1993 Feb;60(1):76–87. [PubMed] [Google Scholar]
  50. St Jacques S., Dadi H. K., Letarte M. CD44 in human placenta: localization and binding to hyaluronic acid. Placenta. 1993 Jan-Feb;14(1):25–39. doi: 10.1016/s0143-4004(05)80246-2. [DOI] [PubMed] [Google Scholar]
  51. Suzuki A., Goll D. E., Singh I., Allen R. E., Robson R. M., Stromer M. H. Some properties of purified skeletal muscle alpha-actinin. J Biol Chem. 1976 Nov 10;251(21):6860–6870. [PubMed] [Google Scholar]
  52. Takeuchi K., Kawashima A., Nagafuchi A., Tsukita S. Structural diversity of band 4.1 superfamily members. J Cell Sci. 1994 Jul;107(Pt 7):1921–1928. doi: 10.1242/jcs.107.7.1921. [DOI] [PubMed] [Google Scholar]
  53. Takeuchi K., Sato N., Kasahara H., Funayama N., Nagafuchi A., Yonemura S., Tsukita S., Tsukita S. Perturbation of cell adhesion and microvilli formation by antisense oligonucleotides to ERM family members. J Cell Biol. 1994 Jun;125(6):1371–1384. doi: 10.1083/jcb.125.6.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Thuillier L., Hivroz C., Fagard R., Andreoli C., Mangeat P. Ligation of CD4 surface antigen induces rapid tyrosine phosphorylation of the cytoskeletal protein ezrin. Cell Immunol. 1994 Jul;156(2):322–331. doi: 10.1006/cimm.1994.1178. [DOI] [PubMed] [Google Scholar]
  55. Truman P., Ford H. C. Proteins of human placental microvilli: I. Cytoskeletal proteins. Placenta. 1986 Mar-Apr;7(2):95–110. doi: 10.1016/s0143-4004(86)80001-7. [DOI] [PubMed] [Google Scholar]
  56. Tsukita S., Oishi K., Sato N., Sagara J., Kawai A., Tsukita S. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol. 1994 Jul;126(2):391–401. doi: 10.1083/jcb.126.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Turunen O., Wahlström T., Vaheri A. Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. J Cell Biol. 1994 Sep;126(6):1445–1453. doi: 10.1083/jcb.126.6.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Ullrich S. J., Robinson E. A., Appella E. Characterization of a chemically homogeneous tumor antigen from a methylcholanthrene-induced sarcoma, Meth A. Mol Immunol. 1986 May;23(5):545–555. doi: 10.1016/0161-5890(86)90118-5. [DOI] [PubMed] [Google Scholar]
  59. Urushidani T., Hanzel D. K., Forte J. G. Characterization of an 80-kDa phosphoprotein involved in parietal cell stimulation. Am J Physiol. 1989 Jun;256(6 Pt 1):G1070–G1081. doi: 10.1152/ajpgi.1989.256.6.G1070. [DOI] [PubMed] [Google Scholar]
  60. Vanderpuye O. A., Edwards H. C., Booth A. G. Proteins of the human placental microvillar cytoskeleton. alpha-Actinin. Biochem J. 1986 Jan 15;233(2):351–356. doi: 10.1042/bj2330351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Wang R., Chait B. T. High-accuracy mass measurement as a tool for studying proteins. Curr Opin Biotechnol. 1994 Feb;5(1):77–84. doi: 10.1016/s0958-1669(05)80074-6. [DOI] [PubMed] [Google Scholar]
  62. Ward W. H., Cook P. N., Slater A. M., Davies D. H., Holdgate G. A., Green L. R. Epidermal growth factor receptor tyrosine kinase. Investigation of catalytic mechanism, structure-based searching and discovery of a potent inhibitor. Biochem Pharmacol. 1994 Aug 17;48(4):659–666. doi: 10.1016/0006-2952(94)90042-6. [DOI] [PubMed] [Google Scholar]
  63. Winckler B., González Agosti C., Magendantz M., Solomon F. Analysis of a cortical cytoskeletal structure: a role for ezrin-radixin-moesin (ERM proteins) in the marginal band of chicken erythrocytes. J Cell Sci. 1994 Sep;107(Pt 9):2523–2534. doi: 10.1242/jcs.107.9.2523. [DOI] [PubMed] [Google Scholar]
  64. Wolf H. J., Schmidt W., Drenckhahn D. Immunocytochemical analysis of the cytoskeleton of the human amniotic epithelium. Cell Tissue Res. 1991 Nov;266(2):385–389. doi: 10.1007/BF00318194. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES