Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Dec 1;131(5):1291–1301. doi: 10.1083/jcb.131.5.1291

Dynamics of human keratin 18 phosphorylation: polarized distribution of phosphorylated keratins in simple epithelial tissues

PMCID: PMC2120635  PMID: 8522590

Abstract

Phosphorylation of keratin polypeptides 8 and 18 (K8/18) and other intermediate filament proteins results in their reorganization in vitro and in vivo. In order to study functional aspects of human K18 phosphorylation, we generated and purified a polyclonal antibody (termed 3055) that specifically recognizes a major phosphorylation site (ser52) of human K18 but not dephosphorylated K18 or a ser52-->ala K18 mutant. Pulse-chase experiments followed by immunoprecipitation and peptide mapping of in vivo 32PO4-labeled K8/18 indicated that the overall phosphorylation turnover rate is faster for K18 versus K8, and that ser52 of K18 is a highly dynamic phosphorylation site. Isoelectric focusing of 32PO4 labeled K18 followed by immunoblotting with 3055 showed that the major phosphorylated K18 species contain ser52 phosphorylation but that some K18 molecules exist that are preferentially phosphorylated on K18 sites other than ser52. Immunoblotting of total cell lysates obtained from cells at different stages of the cell cycle showed that ser52 phosphorylation increases three to fourfold during the S and G2/M phases of the cell cycle. Immunofluorescence staining of cells at different stages of mitosis, using 3055 or other antibodies that recognize the total keratin pool, resulted in preferential binding of the 3055 antibody to the reorganized keratin fraction. Staining of human tissues or tissues from transgenic mice that express human K18 showed that the phospho-ser52 K18 species are located preferentially in the basolateral and apical domains in the liver and pancreas, respectively, but no preferential localization was noted in other simple epithelial organs examined. Our results support a model whereby phosphorylated intermediate filaments are localized in specific cellular domains depending on the tissue type and site(s) of phosphorylation. In addition, ser52 of human K18 is a highly dynamic phosphorylation site that undergoes modulation during the S and G2/M phases of the cell cycle in association with filament reorganization.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe M., Oshima R. G. A single human keratin 18 gene is expressed in diverse epithelial cells of transgenic mice. J Cell Biol. 1990 Sep;111(3):1197–1206. doi: 10.1083/jcb.111.3.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andrews D. M., Kitchin J., Seale P. W. Solid-phase synthesis of a range of O-phosphorylated peptides by post-assembly phosphitylation and oxidation. Int J Pept Protein Res. 1991 Nov;38(5):469–475. doi: 10.1111/j.1399-3011.1991.tb01528.x. [DOI] [PubMed] [Google Scholar]
  3. Bangalore L., Tanner A. J., Laudano A. P., Stern D. F. Antiserum raised against a synthetic phosphotyrosine-containing peptide selectively recognizes p185neu/erbB-2 and the epidermal growth factor receptor. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11637–11641. doi: 10.1073/pnas.89.23.11637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baribault H., Blouin R., Bourgon L., Marceau N. Epidermal growth factor-induced selective phosphorylation of cultured rat hepatocyte 55-kD cytokeratin before filament reorganization and DNA synthesis. J Cell Biol. 1989 Oct;109(4 Pt 1):1665–1676. doi: 10.1083/jcb.109.4.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bennett V., Gilligan D. M. The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. Annu Rev Cell Biol. 1993;9:27–66. doi: 10.1146/annurev.cb.09.110193.000331. [DOI] [PubMed] [Google Scholar]
  6. Boyle W. J., van der Geer P., Hunter T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 1991;201:110–149. doi: 10.1016/0076-6879(91)01013-r. [DOI] [PubMed] [Google Scholar]
  7. Busso N., Masur S. K., Lazega D., Waxman S., Ossowski L. Induction of cell migration by pro-urokinase binding to its receptor: possible mechanism for signal transduction in human epithelial cells. J Cell Biol. 1994 Jul;126(1):259–270. doi: 10.1083/jcb.126.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Celis J. E., Larsen P. M., Fey S. J., Celis A. Phosphorylation of keratin and vimentin polypeptides in normal and transformed mitotic human epithelial amnion cells: behavior of keratin and vimentin filaments during mitosis. J Cell Biol. 1983 Nov;97(5 Pt 1):1429–1434. doi: 10.1083/jcb.97.5.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chou C. F., Omary M. B. Mitotic arrest with anti-microtubule agents or okadaic acid is associated with increased glycoprotein terminal GlcNAc's. J Cell Sci. 1994 Jul;107(Pt 7):1833–1843. doi: 10.1242/jcs.107.7.1833. [DOI] [PubMed] [Google Scholar]
  10. Chou C. F., Omary M. B. Mitotic arrest-associated enhancement of O-linked glycosylation and phosphorylation of human keratins 8 and 18. J Biol Chem. 1993 Feb 25;268(6):4465–4472. [PubMed] [Google Scholar]
  11. Chou C. F., Riopel C. L., Omary M. B. Identification of a keratin-associated protein that localizes to a membrane compartment. Biochem J. 1994 Mar 1;298(Pt 2):457–463. doi: 10.1042/bj2980457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chou C. F., Riopel C. L., Rott L. S., Omary M. B. A significant soluble keratin fraction in 'simple' epithelial cells. Lack of an apparent phosphorylation and glycosylation role in keratin solubility. J Cell Sci. 1993 Jun;105(Pt 2):433–444. doi: 10.1242/jcs.105.2.433. [DOI] [PubMed] [Google Scholar]
  13. Chou C. F., Smith A. J., Omary M. B. Characterization and dynamics of O-linked glycosylation of human cytokeratin 8 and 18. J Biol Chem. 1992 Feb 25;267(6):3901–3906. [PubMed] [Google Scholar]
  14. Czernik A. J., Girault J. A., Nairn A. C., Chen J., Snyder G., Kebabian J., Greengard P. Production of phosphorylation state-specific antibodies. Methods Enzymol. 1991;201:264–283. doi: 10.1016/0076-6879(91)01025-w. [DOI] [PubMed] [Google Scholar]
  15. De Luca M., Tamura R. N., Kajiji S., Bondanza S., Rossino P., Cancedda R., Marchisio P. C., Quaranta V. Polarized integrin mediates human keratinocyte adhesion to basal lamina. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6888–6892. doi: 10.1073/pnas.87.17.6888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. DiGiovanna M. P., Stern D. F. Activation state-specific monoclonal antibody detects tyrosine phosphorylated p185neu/erbB-2 in a subset of human breast tumors overexpressing this receptor. Cancer Res. 1995 May 1;55(9):1946–1955. [PubMed] [Google Scholar]
  17. Dong D. L., Xu Z. S., Chevrier M. R., Cotter R. J., Cleveland D. W., Hart G. W. Glycosylation of mammalian neurofilaments. Localization of multiple O-linked N-acetylglucosamine moieties on neurofilament polypeptides L and M. J Biol Chem. 1993 Aug 5;268(22):16679–16687. [PubMed] [Google Scholar]
  18. Drago G. A., Colyer J. Discrimination between two sites of phosphorylation on adjacent amino acids by phosphorylation site-specific antibodies to phospholamban. J Biol Chem. 1994 Oct 7;269(40):25073–25077. [PubMed] [Google Scholar]
  19. Epstein R. J., Druker B. J., Roberts T. M., Stiles C. D. Synthetic phosphopeptide immunogens yield activation-specific antibodies to the c-erbB-2 receptor. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10435–10439. doi: 10.1073/pnas.89.21.10435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Frappier T., Regnouf F., Pradel L. A. Binding of brain spectrin to the 70-kDa neurofilament subunit protein. Eur J Biochem. 1987 Dec 15;169(3):651–657. doi: 10.1111/j.1432-1033.1987.tb13657.x. [DOI] [PubMed] [Google Scholar]
  21. Fuchs E., Chan Y. M., Paller A. S., Yu Q. C. Cracks in the foundation: keratin filaments and genetic disease. Trends Cell Biol. 1994 Sep;4(9):321–326. doi: 10.1016/0962-8924(94)90233-x. [DOI] [PubMed] [Google Scholar]
  22. Fuchs E., Coulombe P. A. Of mice and men: genetic skin diseases of keratin. Cell. 1992 Jun 12;69(6):899–902. doi: 10.1016/0092-8674(92)90607-e. [DOI] [PubMed] [Google Scholar]
  23. Fuchs E., Weber K. Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. 1994;63:345–382. doi: 10.1146/annurev.bi.63.070194.002021. [DOI] [PubMed] [Google Scholar]
  24. Gonda Y., Nishizawa K., Ando S., Kitamura S., Minoura Y., Nishi Y., Inagaki M. Involvement of protein kinase C in the regulation of assembly-disassembly of neurofilaments in vitro. Biochem Biophys Res Commun. 1990 Mar 30;167(3):1316–1325. doi: 10.1016/0006-291x(90)90667-c. [DOI] [PubMed] [Google Scholar]
  25. Gómez M., Navarro P., Quintanilla M., Cano A. Expression of alpha 6 beta 4 integrin increases during malignant conversion of mouse epidermal keratinocytes: association of beta 4 subunit to the cytokeratin fraction. Exp Cell Res. 1992 Aug;201(2):250–261. doi: 10.1016/0014-4827(92)90272-a. [DOI] [PubMed] [Google Scholar]
  26. Inagaki M., Gonda Y., Matsuyama M., Nishizawa K., Nishi Y., Sato C. Intermediate filament reconstitution in vitro. The role of phosphorylation on the assembly-disassembly of desmin. J Biol Chem. 1988 Apr 25;263(12):5970–5978. [PubMed] [Google Scholar]
  27. Inagaki M., Nakamura Y., Takeda M., Nishimura T., Inagaki N. Glial fibrillary acidic protein: dynamic property and regulation by phosphorylation. Brain Pathol. 1994 Jul;4(3):239–243. doi: 10.1111/j.1750-3639.1994.tb00839.x. [DOI] [PubMed] [Google Scholar]
  28. Inagaki M., Nishi Y., Nishizawa K., Matsuyama M., Sato C. Site-specific phosphorylation induces disassembly of vimentin filaments in vitro. Nature. 1987 Aug 13;328(6131):649–652. doi: 10.1038/328649a0. [DOI] [PubMed] [Google Scholar]
  29. Johansson M. W., Larsson E., Lüning B., Pasquale E. B., Ruoslahti E. Altered localization and cytoplasmic domain-binding properties of tyrosine-phosphorylated beta 1 integrin. J Cell Biol. 1994 Sep;126(5):1299–1309. doi: 10.1083/jcb.126.5.1299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Julien J. P., Mushynski W. E. The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments. J Biol Chem. 1983 Mar 25;258(6):4019–4025. [PubMed] [Google Scholar]
  31. King I. A., Hounsell E. F. Cytokeratin 13 contains O-glycosidically linked N-acetylglucosamine residues. J Biol Chem. 1989 Aug 25;264(24):14022–14028. [PubMed] [Google Scholar]
  32. Klymkowsky M. W., Maynell L. A., Nislow C. Cytokeratin phosphorylation, cytokeratin filament severing and the solubilization of the maternal mRNA Vg1. J Cell Biol. 1991 Aug;114(4):787–797. doi: 10.1083/jcb.114.4.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kouklis P. D., Hutton E., Fuchs E. Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins. J Cell Biol. 1994 Nov;127(4):1049–1060. doi: 10.1083/jcb.127.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ku N. O., Omary M. B. Identification and mutational analysis of the glycosylation sites of human keratin 18. J Biol Chem. 1995 May 19;270(20):11820–11827. doi: 10.1074/jbc.270.20.11820. [DOI] [PubMed] [Google Scholar]
  35. Ku N. O., Omary M. B. Identification of the major physiologic phosphorylation site of human keratin 18: potential kinases and a role in filament reorganization. J Cell Biol. 1994 Oct;127(1):161–171. doi: 10.1083/jcb.127.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  37. Langley R. C., Jr, Cohen C. M. Cell type-specific association between two types of spectrin and two types of intermediate filaments. Cell Motil Cytoskeleton. 1987;8(2):165–173. doi: 10.1002/cm.970080208. [DOI] [PubMed] [Google Scholar]
  38. Lee V. M., Balin B. J., Otvos L., Jr, Trojanowski J. Q. A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science. 1991 Feb 8;251(4994):675–678. doi: 10.1126/science.1899488. [DOI] [PubMed] [Google Scholar]
  39. Lee V. M., Carden M. J., Schlaepfer W. W., Trojanowski J. Q. Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats. J Neurosci. 1987 Nov;7(11):3474–3488. doi: 10.1523/JNEUROSCI.07-11-03474.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Liao J., Lowthert L. A., Ghori N., Omary M. B. The 70-kDa heat shock proteins associate with glandular intermediate filaments in an ATP-dependent manner. J Biol Chem. 1995 Jan 13;270(2):915–922. doi: 10.1074/jbc.270.2.915. [DOI] [PubMed] [Google Scholar]
  41. Liao J., Lowthert L. A., Omary M. B. Heat stress or rotavirus infection of human epithelial cells generates a distinct hyperphosphorylated form of keratin 8. Exp Cell Res. 1995 Aug;219(2):348–357. doi: 10.1006/excr.1995.1238. [DOI] [PubMed] [Google Scholar]
  42. Lowthert L. A., Ku N. O., Liao J., Coulombe P. A., Omary M. B. Empigen BB: a useful detergent for solubilization and biochemical analysis of keratins. Biochem Biophys Res Commun. 1995 Jan 5;206(1):370–379. doi: 10.1006/bbrc.1995.1051. [DOI] [PubMed] [Google Scholar]
  43. Mangeat P. H., Burridge K. Immunoprecipitation of nonerythrocyte spectrin within live cells following microinjection of specific antibodies: relation to cytoskeletal structures. J Cell Biol. 1984 Apr;98(4):1363–1377. doi: 10.1083/jcb.98.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Matsuoka Y., Nishizawa K., Yano T., Shibata M., Ando S., Takahashi T., Inagaki M. Two different protein kinases act on a different time schedule as glial filament kinases during mitosis. EMBO J. 1992 Aug;11(8):2895–2902. doi: 10.1002/j.1460-2075.1992.tb05358.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Matter K., Mellman I. Mechanisms of cell polarity: sorting and transport in epithelial cells. Curr Opin Cell Biol. 1994 Aug;6(4):545–554. doi: 10.1016/0955-0674(94)90075-2. [DOI] [PubMed] [Google Scholar]
  46. McLean W. H., Lane E. B. Intermediate filaments in disease. Curr Opin Cell Biol. 1995 Feb;7(1):118–125. doi: 10.1016/0955-0674(95)80053-0. [DOI] [PubMed] [Google Scholar]
  47. Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
  48. Nishizawa K., Yano T., Shibata M., Ando S., Saga S., Takahashi T., Inagaki M. Specific localization of phosphointermediate filament protein in the constricted area of dividing cells. J Biol Chem. 1991 Feb 15;266(5):3074–3079. [PubMed] [Google Scholar]
  49. Nixon R. A., Sihag R. K. Neurofilament phosphorylation: a new look at regulation and function. Trends Neurosci. 1991 Nov;14(11):501–506. doi: 10.1016/0166-2236(91)90062-y. [DOI] [PubMed] [Google Scholar]
  50. Otvos L., Jr, Elekes I., Lee V. M. Solid-phase synthesis of phosphopeptides. Int J Pept Protein Res. 1989 Aug;34(2):129–133. doi: 10.1111/j.1399-3011.1989.tb01501.x. [DOI] [PubMed] [Google Scholar]
  51. Pasdar M., Nelson W. J. Kinetics of desmosome assembly in Madin-Darby canine kidney epithelial cells: temporal and spatial regulation of desmoplakin organization and stabilization upon cell-cell contact. II. Morphological analysis. J Cell Biol. 1988 Mar;106(3):687–695. doi: 10.1083/jcb.106.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rodriguez-Boulan E., Powell S. K. Polarity of epithelial and neuronal cells. Annu Rev Cell Biol. 1992;8:395–427. doi: 10.1146/annurev.cb.08.110192.002143. [DOI] [PubMed] [Google Scholar]
  53. Sihag R. K., Nixon R. A. Identification of Ser-55 as a major protein kinase A phosphorylation site on the 70-kDa subunit of neurofilaments. Early turnover during axonal transport. J Biol Chem. 1991 Oct 5;266(28):18861–18867. [PubMed] [Google Scholar]
  54. Stappenbeck T. S., Bornslaeger E. A., Corcoran C. M., Luu H. H., Virata M. L., Green K. J. Functional analysis of desmoplakin domains: specification of the interaction with keratin versus vimentin intermediate filament networks. J Cell Biol. 1993 Nov;123(3):691–705. doi: 10.1083/jcb.123.3.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Stappenbeck T. S., Lamb J. A., Corcoran C. M., Green K. J. Phosphorylation of the desmoplakin COOH terminus negatively regulates its interaction with keratin intermediate filament networks. J Biol Chem. 1994 Nov 25;269(47):29351–29354. [PubMed] [Google Scholar]
  56. Steinert P. M., Bale S. J. Genetic skin diseases caused by mutations in keratin intermediate filaments. Trends Genet. 1993 Aug;9(8):280–284. doi: 10.1016/0168-9525(93)90014-9. [DOI] [PubMed] [Google Scholar]
  57. Steinert P. M., Roop D. R. Molecular and cellular biology of intermediate filaments. Annu Rev Biochem. 1988;57:593–625. doi: 10.1146/annurev.bi.57.070188.003113. [DOI] [PubMed] [Google Scholar]
  58. Sternberger L. A., Sternberger N. H. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6126–6130. doi: 10.1073/pnas.80.19.6126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Takemura R., Okabe S., Kobayashi N., Hirokawa N. Reorganization of brain spectrin (fodrin) during differentiation of PC12 cells. Neuroscience. 1993 Jan;52(2):381–391. doi: 10.1016/0306-4522(93)90165-c. [DOI] [PubMed] [Google Scholar]
  60. Tsujimura K., Ogawara M., Takeuchi Y., Imajoh-Ohmi S., Ha M. H., Inagaki M. Visualization and function of vimentin phosphorylation by cdc2 kinase during mitosis. J Biol Chem. 1994 Dec 9;269(49):31097–31106. [PubMed] [Google Scholar]
  61. Vacquier V. D., Moy G. W. Microchemical determination of phosphate in proteins isolated from polyacrylamide gels. Methods Enzymol. 1991;201:261–264. doi: 10.1016/0076-6879(91)01024-v. [DOI] [PubMed] [Google Scholar]
  62. Yano T., Taura C., Shibata M., Hirono Y., Ando S., Kusubata M., Takahashi T., Inagaki M. A monoclonal antibody to the phosphorylated form of glial fibrillary acidic protein: application to a non-radioactive method for measuring protein kinase activities. Biochem Biophys Res Commun. 1991 Mar 29;175(3):1144–1151. doi: 10.1016/0006-291x(91)91685-6. [DOI] [PubMed] [Google Scholar]
  63. Yano T., Tokui T., Nishi Y., Nishizawa K., Shibata M., Kikuchi K., Tsuiki S., Yamauchi T., Inagaki M. Phosphorylation of keratin intermediate filaments by protein kinase C, by calmodulin-dependent protein kinase and by cAMP-dependent protein kinase. Eur J Biochem. 1991 Apr 23;197(2):281–290. doi: 10.1111/j.1432-1033.1991.tb15909.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES