Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Dec 1;131(5):1193–1203. doi: 10.1083/jcb.131.5.1193

Gap junction turnover, intracellular trafficking, and phosphorylation of connexin43 in brefeldin A-treated rat mammary tumor cells

PMCID: PMC2120642  PMID: 8522583

Abstract

Intercellular gap junction channels are thought to form when oligomers of connexins from one cell (connexons) register and pair with connexons from a neighboring cell en route to forming tightly packed arrays (plaques). In the current study we used the rat mammary BICR-M1Rk tumor cell line to examine the trafficking, maturation, and kinetics of connexin43 (Cx43). Cx43 was conclusively shown to reside in the Golgi apparatus in addition to sites of cell-cell apposition in these cells and in normal rat kidney cells. Brefeldin A (BFA) blocked Cx43 trafficking to the surface of the mammary cells and also prevented phosphorylation of the 42-kD form of Cx43 to 44- and 46-kD species. However, phosphorylation of Cx43 occurred in the presence of BFA while it was still a resident of the ER or Golgi apparatus yielding a 43-kD form of Cx43. Moreover, the 42- and 43-kD forms of Cx43 trapped in the ER/Golgi compartment were available for gap junction assembly upon the removal of BFA. Mammary cells treated with BFA for 6 h lost preexisting gap junction "plaques," as well as the 44- and 46-kD forms of Cx43 and functional coupling. These events were reversible 1 h after the removal of BFA and not dependent on protein synthesis. In summary, we provide strong evidence that in BICR-M1Rk tumor cells: (a) Cx43 is transiently phosphorylated in the ER/Golgi apparatus, (b) Cx43 trapped in the ER/Golgi compartment is not subject to rapid degradation and is available for the assembly of new gap junction channels upon the removal of BFA, (c) the rapid turnover of gap junction plaques is correlated with the loss of the 44- and 46-kD forms of Cx43.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berthoud V. M., Ledbetter M. L., Hertzberg E. L., Sáez J. C. Connexin43 in MDCK cells: regulation by a tumor-promoting phorbol ester and Ca2+. Eur J Cell Biol. 1992 Feb;57(1):40–50. [PubMed] [Google Scholar]
  2. Beyer E. C., Paul D. L., Goodenough D. A. Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol. 1987 Dec;105(6 Pt 1):2621–2629. doi: 10.1083/jcb.105.6.2621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brümmer F., Zempel G., Bühle P., Stein J. C., Hülser D. F. Retinoic acid modulates gap junctional permeability: a comparative study of dye spreading and ionic coupling in cultured cells. Exp Cell Res. 1991 Oct;196(2):158–163. doi: 10.1016/0014-4827(91)90245-p. [DOI] [PubMed] [Google Scholar]
  4. Budunova I. V., Williams G. M., Spray D. C. Effect of tumor promoting stimuli on gap junction permeability and connexin43 expression in ARL18 rat liver cell line. Arch Toxicol. 1993;67(8):565–572. doi: 10.1007/BF01969270. [DOI] [PubMed] [Google Scholar]
  5. Chu F. F., Doyle D. Turnover of plasma membrane proteins in rat hepatoma cells and primary cultures of rat hepatocytes. J Biol Chem. 1985 Mar 10;260(5):3097–3107. [PubMed] [Google Scholar]
  6. Croul S., Mezitis S. G., Stieber A., Chen Y. J., Gonatas J. O., Goud B., Gonatas N. K. Immunocytochemical visualization of the Golgi apparatus in several species, including human, and tissues with an antiserum against MG-160, a sialoglycoprotein of rat Golgi apparatus. J Histochem Cytochem. 1990 Jul;38(7):957–963. doi: 10.1177/38.7.2355176. [DOI] [PubMed] [Google Scholar]
  7. Crow D. S., Beyer E. C., Paul D. L., Kobe S. S., Lau A. F. Phosphorylation of connexin43 gap junction protein in uninfected and Rous sarcoma virus-transformed mammalian fibroblasts. Mol Cell Biol. 1990 Apr;10(4):1754–1763. doi: 10.1128/mcb.10.4.1754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davidson H. W., McGowan C. H., Balch W. E. Evidence for the regulation of exocytic transport by protein phosphorylation. J Cell Biol. 1992 Mar;116(6):1343–1355. doi: 10.1083/jcb.116.6.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Sousa P. A., Valdimarsson G., Nicholson B. J., Kidder G. M. Connexin trafficking and the control of gap junction assembly in mouse preimplantation embryos. Development. 1993 Apr;117(4):1355–1367. doi: 10.1242/dev.117.4.1355. [DOI] [PubMed] [Google Scholar]
  10. Epstein M. L., Sheridan J. D., Johnson R. G. Formation of low-resistance junctions in vitro in the absence of protein synthesis and ATP production. Exp Cell Res. 1977 Jan;104(1):25–30. doi: 10.1016/0014-4827(77)90064-7. [DOI] [PubMed] [Google Scholar]
  11. Falk M. M., Kumar N. M., Gilula N. B. Membrane insertion of gap junction connexins: polytopic channel forming membrane proteins. J Cell Biol. 1994 Oct;127(2):343–355. doi: 10.1083/jcb.127.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fallon R. F., Goodenough D. A. Five-hour half-life of mouse liver gap-junction protein. J Cell Biol. 1981 Aug;90(2):521–526. doi: 10.1083/jcb.90.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goldberg G. S., Lau A. F. Dynamics of connexin43 phosphorylation in pp60v-src-transformed cells. Biochem J. 1993 Nov 1;295(Pt 3):735–742. doi: 10.1042/bj2950735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gonatas J. O., Mezitis S. G., Stieber A., Fleischer B., Gonatas N. K. MG-160. A novel sialoglycoprotein of the medial cisternae of the Golgi apparatus [published eeratum appears in J Biol Chem 1989 Mar 5;264(7):4264]. J Biol Chem. 1989 Jan 5;264(1):646–653. [PubMed] [Google Scholar]
  15. Gupta V. K., Berthoud V. M., Atal N., Jarillo J. A., Barrio L. C., Beyer E. C. Bovine connexin44, a lens gap junction protein: molecular cloning, immunologic characterization, and functional expression. Invest Ophthalmol Vis Sci. 1994 Sep;35(10):3747–3758. [PubMed] [Google Scholar]
  16. Hare J. F., Taylor K. Mechanisms of plasma membrane protein degradation: recycling proteins are degraded more rapidly than those confined to the cell surface. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5902–5906. doi: 10.1073/pnas.88.13.5902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hendrix E. M., Mao S. J., Everson W., Larsen W. J. Myometrial connexin 43 trafficking and gap junction assembly at term and in preterm labor. Mol Reprod Dev. 1992 Sep;33(1):27–38. doi: 10.1002/mrd.1080330105. [DOI] [PubMed] [Google Scholar]
  18. Hülser D. F., Webb D. J. Relation between ionic coupling and morphology of established cells in culture. Exp Cell Res. 1973 Jul;80(1):210–222. doi: 10.1016/0014-4827(73)90291-7. [DOI] [PubMed] [Google Scholar]
  19. Jiang J. X., Paul D. L., Goodenough D. A. Posttranslational phosphorylation of lens fiber connexin46: a slow occurrence. Invest Ophthalmol Vis Sci. 1993 Dec;34(13):3558–3565. [PubMed] [Google Scholar]
  20. Kadle R., Zhang J. T., Nicholson B. J. Tissue-specific distribution of differentially phosphorylated forms of Cx43. Mol Cell Biol. 1991 Jan;11(1):363–369. doi: 10.1128/mcb.11.1.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Laing J. G., Westphale E. M., Engelmann G. L., Beyer E. C. Characterization of the gap junction protein, connexin45. J Membr Biol. 1994 Apr;139(1):31–40. doi: 10.1007/BF00232672. [DOI] [PubMed] [Google Scholar]
  23. Laird D. W., Puranam K. L., Revel J. P. Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. Biochem J. 1991 Jan 1;273(Pt 1):67–72. doi: 10.1042/bj2730067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Laird D. W., Revel J. P. Biochemical and immunochemical analysis of the arrangement of connexin43 in rat heart gap junction membranes. J Cell Sci. 1990 Sep;97(Pt 1):109–117. doi: 10.1242/jcs.97.1.109. [DOI] [PubMed] [Google Scholar]
  25. Lampe P. D. Analyzing phorbol ester effects on gap junctional communication: a dramatic inhibition of assembly. J Cell Biol. 1994 Dec;127(6 Pt 2):1895–1905. doi: 10.1083/jcb.127.6.1895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lau A. F., Kanemitsu M. Y., Kurata W. E., Danesh S., Boynton A. L. Epidermal growth factor disrupts gap-junctional communication and induces phosphorylation of connexin43 on serine. Mol Biol Cell. 1992 Aug;3(8):865–874. doi: 10.1091/mbc.3.8.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lee S. W., Tomasetto C., Paul D., Keyomarsi K., Sager R. Transcriptional downregulation of gap-junction proteins blocks junctional communication in human mammary tumor cell lines. J Cell Biol. 1992 Sep;118(5):1213–1221. doi: 10.1083/jcb.118.5.1213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lippincott-Schwartz J., Yuan L. C., Bonifacino J. S., Klausner R. D. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell. 1989 Mar 10;56(5):801–813. doi: 10.1016/0092-8674(89)90685-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McLachlin J. R., Kidder G. M. Intercellular junctional coupling in preimplantation mouse embryos: effect of blocking transcription or translation. Dev Biol. 1986 Sep;117(1):146–155. doi: 10.1016/0012-1606(86)90357-x. [DOI] [PubMed] [Google Scholar]
  30. Misumi Y., Misumi Y., Miki K., Takatsuki A., Tamura G., Ikehara Y. Novel blockade by brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J Biol Chem. 1986 Aug 25;261(24):11398–11403. [PubMed] [Google Scholar]
  31. Moreno A. P., Sáez J. C., Fishman G. I., Spray D. C. Human connexin43 gap junction channels. Regulation of unitary conductances by phosphorylation. Circ Res. 1994 Jun;74(6):1050–1057. doi: 10.1161/01.res.74.6.1050. [DOI] [PubMed] [Google Scholar]
  32. Musil L. S., Beyer E. C., Goodenough D. A. Expression of the gap junction protein connexin43 in embryonic chick lens: molecular cloning, ultrastructural localization, and post-translational phosphorylation. J Membr Biol. 1990 Jun;116(2):163–175. doi: 10.1007/BF01868674. [DOI] [PubMed] [Google Scholar]
  33. Musil L. S., Cunningham B. A., Edelman G. M., Goodenough D. A. Differential phosphorylation of the gap junction protein connexin43 in junctional communication-competent and -deficient cell lines. J Cell Biol. 1990 Nov;111(5 Pt 1):2077–2088. doi: 10.1083/jcb.111.5.2077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Musil L. S., Goodenough D. A. Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol. 1991 Dec;115(5):1357–1374. doi: 10.1083/jcb.115.5.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Musil L. S., Goodenough D. A. Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin43, occurs after exit from the ER. Cell. 1993 Sep 24;74(6):1065–1077. doi: 10.1016/0092-8674(93)90728-9. [DOI] [PubMed] [Google Scholar]
  36. Naus C. C., Hearn S., Zhu D., Nicholson B. J., Shivers R. R. Ultrastructural analysis of gap junctions in C6 glioma cells transfected with connexin43 cDNA. Exp Cell Res. 1993 May;206(1):72–84. doi: 10.1006/excr.1993.1122. [DOI] [PubMed] [Google Scholar]
  37. Naus C. C., Zhu D., Todd S. D., Kidder G. M. Characteristics of C6 glioma cells overexpressing a gap junction protein. Cell Mol Neurobiol. 1992 Apr;12(2):163–175. doi: 10.1007/BF00713370. [DOI] [PubMed] [Google Scholar]
  38. Nnamani C., Godwin A., Ducsay C. A., Longo L. D., Fletcher W. H. Regulation of cell-cell communication mediated by connexin 43 in rabbit myometrial cells. Biol Reprod. 1994 Feb;50(2):377–389. doi: 10.1095/biolreprod50.2.377. [DOI] [PubMed] [Google Scholar]
  39. Puranam K. L., Laird D. W., Revel J. P. Trapping an intermediate form of connexin43 in the Golgi. Exp Cell Res. 1993 May;206(1):85–92. doi: 10.1006/excr.1993.1123. [DOI] [PubMed] [Google Scholar]
  40. Rahman S., Carlile G., Evans W. H. Assembly of hepatic gap junctions. Topography and distribution of connexin 32 in intracellular and plasma membranes determined using sequence-specific antibodies. J Biol Chem. 1993 Jan 15;268(2):1260–1265. [PubMed] [Google Scholar]
  41. Rajewsky M. F., Grüneisen A. Cell proliferation in transplanted rat tumors: influence of the host immune system. Eur J Immunol. 1972 Oct;2(5):445–447. doi: 10.1002/eji.1830020512. [DOI] [PubMed] [Google Scholar]
  42. Rosa P., Mantovani S., Rosboch R., Huttner W. B. Monensin and brefeldin A differentially affect the phosphorylation and sulfation of secretory proteins. J Biol Chem. 1992 Jun 15;267(17):12227–12232. [PubMed] [Google Scholar]
  43. Saez J. C., Spray D. C., Nairn A. C., Hertzberg E., Greengard P., Bennett M. V. cAMP increases junctional conductance and stimulates phosphorylation of the 27-kDa principal gap junction polypeptide. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2473–2477. doi: 10.1073/pnas.83.8.2473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sáez J. C., Nairn A. C., Czernik A. J., Spray D. C., Hertzberg E. L., Greengard P., Bennett M. V. Phosphorylation of connexin 32, a hepatocyte gap-junction protein, by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. Eur J Biochem. 1990 Sep 11;192(2):263–273. doi: 10.1111/j.1432-1033.1990.tb19223.x. [DOI] [PubMed] [Google Scholar]
  45. Traub O., Look J., Dermietzel R., Brümmer F., Hülser D., Willecke K. Comparative characterization of the 21-kD and 26-kD gap junction proteins in murine liver and cultured hepatocytes. J Cell Biol. 1989 Mar;108(3):1039–1051. doi: 10.1083/jcb.108.3.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Traub O., Look J., Paul D., Willecke K. Cyclic adenosine monophosphate stimulates biosynthesis and phosphorylation of the 26 kDa gap junction protein in cultured mouse hepatocytes. Eur J Cell Biol. 1987 Feb;43(1):48–54. [PubMed] [Google Scholar]
  47. Turner M. D., Handel S. E., Wilde C. J., Burgoyne R. D. Differential effect of brefeldin A on phosphorylation of the caseins in lactating mouse mammary epithelial cells. J Cell Sci. 1993 Dec;106(Pt 4):1221–1226. doi: 10.1242/jcs.106.4.1221. [DOI] [PubMed] [Google Scholar]
  48. Wilgenbus K. K., Kirkpatrick C. J., Knuechel R., Willecke K., Traub O. Expression of Cx26, Cx32 and Cx43 gap junction proteins in normal and neoplastic human tissues. Int J Cancer. 1992 Jun 19;51(4):522–529. doi: 10.1002/ijc.2910510404. [DOI] [PubMed] [Google Scholar]
  49. Yancey S. B., John S. A., Lal R., Austin B. J., Revel J. P. The 43-kD polypeptide of heart gap junctions: immunolocalization, topology, and functional domains. J Cell Biol. 1989 Jun;108(6):2241–2254. doi: 10.1083/jcb.108.6.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Yancey S. B., Nicholson B. J., Revel J. P. The dynamic state of liver gap junctions. J Supramol Struct Cell Biochem. 1981;16(3):221–232. doi: 10.1002/jsscb.1981.380160303. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES