Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Dec 2;131(6):1849–1855. doi: 10.1083/jcb.131.6.1849

Targeted disruption of CD44 in MDAY-D2 lymphosarcoma cells has no effect on subcutaneous growth or metastatic capacity

PMCID: PMC2120664  PMID: 8557751

Abstract

CD44 splice variants have been shown to be involved in metastasis of carcinomas. In addition, the standard form of CD44 has been implicated in metastasis, particularly of melanomas and lymphomas. To investigate this, we have generated a CD44-negative mutant of the highly metastatic murine MDAY-D2 lymphosarcoma. The two CD44 alleles of this diploid cell line were sequentially disrupted by homologous recombination, using isogenic CD44 genomic constructs interrupted by a neomycin or hygromycin resistance-conferring gene. The resulting double knockout (DKO) cells had completely lost the capacity to bind to immobilized hyaluronic acid, but did not differ from MDAY-D2 cells in integrin expression or in vitro growth. Subcutaneous (s.c.) growth potential and metastatic capacity of MDAY-D2 and DKO cells were assessed by s.c. and i.v. injection of the lowest cell dose (10(3) or 10(4), respectively) that gave rise to tumor formation by MDAY-D2 cells in approximately 100% of the mice. Quite unexpectedly, we observed no difference at all in either s.c. growth rate or local invasion into surrounding tissues between MDAY-D2 cells and the CD44-negative DKO cells. Also hematogenous metastasis formation upon i.v. injection was similar: both parental and DKO cells metastasized extensively to the spleen, liver, and bone marrow. We conclude that, at least for these MDAY-D2 lymphosarcoma cells, the standard form of CD44 is dispensable for tumor growth and metastasis. Our results show that targeted disruption of genes in tumor cells is a feasible approach to study their role in tumorigenesis and metastasis.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adra C. N., Boer P. H., McBurney M. W. Cloning and expression of the mouse pgk-1 gene and the nucleotide sequence of its promoter. Gene. 1987;60(1):65–74. doi: 10.1016/0378-1119(87)90214-9. [DOI] [PubMed] [Google Scholar]
  2. Aruffo A., Stamenkovic I., Melnick M., Underhill C. B., Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990 Jun 29;61(7):1303–1313. doi: 10.1016/0092-8674(90)90694-a. [DOI] [PubMed] [Google Scholar]
  3. Bartolazzi A., Peach R., Aruffo A., Stamenkovic I. Interaction between CD44 and hyaluronate is directly implicated in the regulation of tumor development. J Exp Med. 1994 Jul 1;180(1):53–66. doi: 10.1084/jem.180.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birch M., Mitchell S., Hart I. R. Isolation and characterization of human melanoma cell variants expressing high and low levels of CD44. Cancer Res. 1991 Dec 15;51(24):6660–6667. [PubMed] [Google Scholar]
  5. Camp R. L., Scheynius A., Johansson C., Puré E. CD44 is necessary for optimal contact allergic responses but is not required for normal leukocyte extravasation. J Exp Med. 1993 Aug 1;178(2):497–507. doi: 10.1084/jem.178.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Charron J., Malynn B. A., Robertson E. J., Goff S. P., Alt F. W. High-frequency disruption of the N-myc gene in embryonic stem and pre-B cell lines by homologous recombination. Mol Cell Biol. 1990 Apr;10(4):1799–1804. doi: 10.1128/mcb.10.4.1799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Denning S. M., Le P. T., Singer K. H., Haynes B. F. Antibodies against the CD44 p80, lymphocyte homing receptor molecule augment human peripheral blood T cell activation. J Immunol. 1990 Jan 1;144(1):7–15. [PubMed] [Google Scholar]
  8. Faassen A. E., Mooradian D. L., Tranquillo R. T., Dickinson R. B., Letourneau P. C., Oegema T. R., McCarthy J. B. Cell surface CD44-related chondroitin sulfate proteoglycan is required for transforming growth factor-beta-stimulated mouse melanoma cell motility and invasive behavior on type I collagen. J Cell Sci. 1993 Jun;105(Pt 2):501–511. doi: 10.1242/jcs.105.2.501. [DOI] [PubMed] [Google Scholar]
  9. Feldhaus A. L., Klug C. A., Arvin K. L., Singh H. Targeted disruption of the Oct-2 locus in a B cell provides genetic evidence for two distinct cell type-specific pathways of octamer element-mediated gene activation. EMBO J. 1993 Jul;12(7):2763–2772. doi: 10.1002/j.1460-2075.1993.tb05937.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Galandrini R., Albi N., Tripodi G., Zarcone D., Terenzi A., Moretta A., Grossi C. E., Velardi A. Antibodies to CD44 trigger effector functions of human T cell clones. J Immunol. 1993 May 15;150(10):4225–4235. [PubMed] [Google Scholar]
  11. Galandrini R., Galluzzo E., Albi N., Grossi C. E., Velardi A. Hyaluronate is costimulatory for human T cell effector functions and binds to CD44 on activated T cells. J Immunol. 1994 Jul 1;153(1):21–31. [PubMed] [Google Scholar]
  12. Guo Y., Ma J., Wang J., Che X., Narula J., Bigby M., Wu M., Sy M. S. Inhibition of human melanoma growth and metastasis in vivo by anti-CD44 monoclonal antibody. Cancer Res. 1994 Mar 15;54(6):1561–1565. [PubMed] [Google Scholar]
  13. Günthert U., Hofmann M., Rudy W., Reber S., Zöller M., Haussmann I., Matzku S., Wenzel A., Ponta H., Herrlich P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell. 1991 Apr 5;65(1):13–24. doi: 10.1016/0092-8674(91)90403-l. [DOI] [PubMed] [Google Scholar]
  14. Hall C. L., Wang C., Lange L. A., Turley E. A. Hyaluronan and the hyaluronan receptor RHAMM promote focal adhesion turnover and transient tyrosine kinase activity. J Cell Biol. 1994 Jul;126(2):575–588. doi: 10.1083/jcb.126.2.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hanson K. D., Sedivy J. M. Analysis of biological selections for high-efficiency gene targeting. Mol Cell Biol. 1995 Jan;15(1):45–51. doi: 10.1128/mcb.15.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huet S., Groux H., Caillou B., Valentin H., Prieur A. M., Bernard A. CD44 contributes to T cell activation. J Immunol. 1989 Aug 1;143(3):798–801. [PubMed] [Google Scholar]
  17. Jalkanen S., Joensuu H., Söderström K. O., Klemi P. Lymphocyte homing and clinical behavior of non-Hodgkin's lymphoma. J Clin Invest. 1991 May;87(5):1835–1840. doi: 10.1172/JCI115205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kerbel R. S., Twiddy R. R., Robertson D. M. Induction of a tumor with greatly increased metastatic growth potential by injection of cells from a low-metastatic H-2 heterozygous tumor cell line into an H-2 incompatible parental strain. Int J Cancer. 1978 Nov 15;22(5):583–594. doi: 10.1002/ijc.2910220513. [DOI] [PubMed] [Google Scholar]
  19. Laurent T. C., Fraser J. R. Hyaluronan. FASEB J. 1992 Apr;6(7):2397–2404. [PubMed] [Google Scholar]
  20. Lesley J., Hyman R. CD44 can be activated to function as an hyaluronic acid receptor in normal murine T cells. Eur J Immunol. 1992 Oct;22(10):2719–2723. doi: 10.1002/eji.1830221036. [DOI] [PubMed] [Google Scholar]
  21. Lesley J., Hyman R., Kincade P. W. CD44 and its interaction with extracellular matrix. Adv Immunol. 1993;54:271–335. doi: 10.1016/s0065-2776(08)60537-4. [DOI] [PubMed] [Google Scholar]
  22. McCourt P. A., Ek B., Forsberg N., Gustafson S. Intercellular adhesion molecule-1 is a cell surface receptor for hyaluronan. J Biol Chem. 1994 Dec 2;269(48):30081–30084. [PubMed] [Google Scholar]
  23. Merzak A., Koocheckpour S., Pilkington G. J. CD44 mediates human glioma cell adhesion and invasion in vitro. Cancer Res. 1994 Aug 1;54(15):3988–3992. [PubMed] [Google Scholar]
  24. Miyake K., Medina K. L., Hayashi S., Ono S., Hamaoka T., Kincade P. W. Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J Exp Med. 1990 Feb 1;171(2):477–488. doi: 10.1084/jem.171.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pals S. T., Horst E., Ossekoppele G. J., Figdor C. G., Scheper R. J., Meijer C. J. Expression of lymphocyte homing receptor as a mechanism of dissemination in non-Hodgkin's lymphoma. Blood. 1989 Mar;73(4):885–888. [PubMed] [Google Scholar]
  26. Pierres A., Lipcey C., Mawas C., Olive D. A unique CD44 monoclonal antibody identifies a new T cell activation pathway. Eur J Immunol. 1992 Feb;22(2):413–417. doi: 10.1002/eji.1830220219. [DOI] [PubMed] [Google Scholar]
  27. Pilarski L. M., Miszta H., Turley E. A. Regulated expression of a receptor for hyaluronan-mediated motility on human thymocytes and T cells. J Immunol. 1993 May 15;150(10):4292–4302. [PubMed] [Google Scholar]
  28. Rodrigues M., Nussenzweig R. S., Romero P., Zavala F. The in vivo cytotoxic activity of CD8+ T cell clones correlates with their levels of expression of adhesion molecules. J Exp Med. 1992 Apr 1;175(4):895–905. doi: 10.1084/jem.175.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Roossien F. F., de Rijk D., Bikker A., Roos E. Involvement of LFA-1 in lymphoma invasion and metastasis demonstrated with LFA-1-deficient mutants. J Cell Biol. 1989 May;108(5):1979–1985. doi: 10.1083/jcb.108.5.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sherman L., Sleeman J., Herrlich P., Ponta H. Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Curr Opin Cell Biol. 1994 Oct;6(5):726–733. doi: 10.1016/0955-0674(94)90100-7. [DOI] [PubMed] [Google Scholar]
  31. Shimizu Y., Van Seventer G. A., Siraganian R., Wahl L., Shaw S. Dual role of the CD44 molecule in T cell adhesion and activation. J Immunol. 1989 Oct 15;143(8):2457–2463. [PubMed] [Google Scholar]
  32. Sonnenberg A., Daams H., Van der Valk M. A., Hilkens J., Hilgers J. Development of mouse mammary gland: identification of stages in differentiation of luminal and myoepithelial cells using monoclonal antibodies and polyvalent antiserum against keratin. J Histochem Cytochem. 1986 Aug;34(8):1037–1046. doi: 10.1177/34.8.2426332. [DOI] [PubMed] [Google Scholar]
  33. Sy M. S., Guo Y. J., Stamenkovic I. Distinct effects of two CD44 isoforms on tumor growth in vivo. J Exp Med. 1991 Oct 1;174(4):859–866. doi: 10.1084/jem.174.4.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sy M. S., Guo Y. J., Stamenkovic I. Inhibition of tumor growth in vivo with a soluble CD44-immunoglobulin fusion protein. J Exp Med. 1992 Aug 1;176(2):623–627. doi: 10.1084/jem.176.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tan P. H., Santos E. B., Rossbach H. C., Sandmaier B. M. Enhancement of natural killer activity by an antibody to CD44. J Immunol. 1993 Feb 1;150(3):812–820. [PubMed] [Google Scholar]
  36. Thomas L., Byers H. R., Vink J., Stamenkovic I. CD44H regulates tumor cell migration on hyaluronate-coated substrate. J Cell Biol. 1992 Aug;118(4):971–977. doi: 10.1083/jcb.118.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Toyama-Sorimachi N., Sorimachi H., Tobita Y., Kitamura F., Yagita H., Suzuki K., Miyasaka M. A novel ligand for CD44 is serglycin, a hematopoietic cell lineage-specific proteoglycan. Possible involvement in lymphoid cell adherence and activation. J Biol Chem. 1995 Mar 31;270(13):7437–7444. doi: 10.1074/jbc.270.13.7437. [DOI] [PubMed] [Google Scholar]
  38. Tölg C., Hofmann M., Herrlich P., Ponta H. Splicing choice from ten variant exons establishes CD44 variability. Nucleic Acids Res. 1993 Mar 11;21(5):1225–1229. doi: 10.1093/nar/21.5.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Underhill C. CD44: the hyaluronan receptor. J Cell Sci. 1992 Oct;103(Pt 2):293–298. doi: 10.1242/jcs.103.2.293. [DOI] [PubMed] [Google Scholar]
  40. Zahalka M. A., Okon E., Gosslar U., Holzmann B., Naor D. Lymph node (but not spleen) invasion by murine lymphoma is both CD44- and hyaluronate-dependent. J Immunol. 1995 May 15;154(10):5345–5355. [PubMed] [Google Scholar]
  41. te Riele H., Maandag E. R., Berns A. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5128–5132. doi: 10.1073/pnas.89.11.5128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. te Riele H., Maandag E. R., Clarke A., Hooper M., Berns A. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature. 1990 Dec 13;348(6302):649–651. doi: 10.1038/348649a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES