Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1995 Dec 2;131(6):1821–1829. doi: 10.1083/jcb.131.6.1821

A neuron-specific isoform of brain ankyrin, 440-kD ankyrinB, is targeted to the axons of rat cerebellar neurons

PMCID: PMC2120681  PMID: 8557748

Abstract

Two isoforms of brain ankyrin, 440- and 220- kD ankyrinB, are generated from the same gene by alternative splicing of pre-mRNA. The larger isoform shares the same NH2-terminal and COOH-terminal domains to the smaller isoform and contains, in addition, a unique inserted domain of about 220-kD in size (Kunimoto, M., E. Otto, and V. Bennett. 1991. J. Cell Biol. 115:1319-1331). Both Isoforms were expressed in primary cerebellar cells in a manner similar to that in vivo; the larger isoform appeared first when axogenesis is actively conducted and the smaller isoform came up later. 440-kD ankyrinB was localized in the axons of cerebellar neurons both in vivo and in vitro using an antibody raised against the insert region, while 220-kD isoform was rather localized in the cell bodies and dendrites of neurons by a specific antibody prepared using a synthetic peptide corresponding to the splice site as antigen. Astroglia cells also expressed 220-kD ankyrinB but not the 440-kD isoform. These results indicate that 440-kD ankyrinB is a neuron-specific isoform targeted to the axons and its unique inserted domain is essential for the targeting.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aizawa H., Kawasaki H., Murofushi H., Kotani S., Suzuki K., Sakai H. Microtubule-binding domain of tau proteins. J Biol Chem. 1988 Jun 5;263(16):7703–7707. [PubMed] [Google Scholar]
  2. Bennett V., Gilligan D. M. The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. Annu Rev Cell Biol. 1993;9:27–66. doi: 10.1146/annurev.cb.09.110193.000331. [DOI] [PubMed] [Google Scholar]
  3. Binder L. I., Frankfurter A., Rebhun L. I. Differential localization of MAP-2 and tau in mammalian neurons in situ. Ann N Y Acad Sci. 1986;466:145–166. doi: 10.1111/j.1749-6632.1986.tb38392.x. [DOI] [PubMed] [Google Scholar]
  4. Brion J. P., Guilleminot J., Nunez J. Dendritic and axonal distribution of the microtubule-associated proteins MAP2 and tau in the cerebellum of the nervous mutant mouse. Brain Res Dev Brain Res. 1988 Dec 1;44(2):221–232. doi: 10.1016/0165-3806(88)90220-9. [DOI] [PubMed] [Google Scholar]
  5. Chan W., Kordeli E., Bennett V. 440-kD ankyrinB: structure of the major developmentally regulated domain and selective localization in unmyelinated axons. J Cell Biol. 1993 Dec;123(6 Pt 1):1463–1473. doi: 10.1083/jcb.123.6.1463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis J. Q., Bennett V. Ankyrin binding activity shared by the neurofascin/L1/NrCAM family of nervous system cell adhesion molecules. J Biol Chem. 1994 Nov 4;269(44):27163–27166. [PubMed] [Google Scholar]
  7. Davis J. Q., McLaughlin T., Bennett V. Ankyrin-binding proteins related to nervous system cell adhesion molecules: candidates to provide transmembrane and intercellular connections in adult brain. J Cell Biol. 1993 Apr;121(1):121–133. doi: 10.1083/jcb.121.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davis J., Bennett V. Brain spectrin. Isolation of subunits and formation of hybrids with erythrocyte spectrin subunits. J Biol Chem. 1983 Jun 25;258(12):7757–7766. [PubMed] [Google Scholar]
  9. Garner C. C., Tucker R. P., Matus A. Selective localization of messenger RNA for cytoskeletal protein MAP2 in dendrites. Nature. 1988 Dec 15;336(6200):674–677. doi: 10.1038/336674a0. [DOI] [PubMed] [Google Scholar]
  10. Goslin K., Schreyer D. J., Skene J. H., Banker G. Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones. Nature. 1988 Dec 15;336(6200):672–674. doi: 10.1038/336672a0. [DOI] [PubMed] [Google Scholar]
  11. Kanai Y., Hirokawa N. Sorting mechanisms of tau and MAP2 in neurons: suppressed axonal transit of MAP2 and locally regulated microtubule binding. Neuron. 1995 Feb;14(2):421–432. doi: 10.1016/0896-6273(95)90298-8. [DOI] [PubMed] [Google Scholar]
  12. Kordeli E., Davis J., Trapp B., Bennett V. An isoform of ankyrin is localized at nodes of Ranvier in myelinated axons of central and peripheral nerves. J Cell Biol. 1990 Apr;110(4):1341–1352. doi: 10.1083/jcb.110.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kordeli E., Lambert S., Bennett V. AnkyrinG. A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J Biol Chem. 1995 Feb 3;270(5):2352–2359. doi: 10.1074/jbc.270.5.2352. [DOI] [PubMed] [Google Scholar]
  14. Kosik K. S., Finch E. A. MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neurites: an immunocytochemical study of cultured rat cerebrum. J Neurosci. 1987 Oct;7(10):3142–3153. doi: 10.1523/JNEUROSCI.07-10-03142.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kunimoto M., Otto E., Bennett V. A new 440-kD isoform is the major ankyrin in neonatal rat brain. J Cell Biol. 1991 Dec;115(5):1319–1331. doi: 10.1083/jcb.115.5.1319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kunimoto M. Possible involvement of the 440 kDa isoform of ankyrinB in neuritogenesis in human neuroblastoma NB-1 cells. FEBS Lett. 1995 Jan 3;357(2):217–220. doi: 10.1016/0014-5793(94)01363-6. [DOI] [PubMed] [Google Scholar]
  17. Lee G., Cowan N., Kirschner M. The primary structure and heterogeneity of tau protein from mouse brain. Science. 1988 Jan 15;239(4837):285–288. doi: 10.1126/science.3122323. [DOI] [PubMed] [Google Scholar]
  18. Lewis S. A., Wang D. H., Cowan N. J. Microtubule-associated protein MAP2 shares a microtubule binding motif with tau protein. Science. 1988 Nov 11;242(4880):936–939. doi: 10.1126/science.3142041. [DOI] [PubMed] [Google Scholar]
  19. Liu Y. C., Chapman E. R., Storm D. R. Targeting of neuromodulin (GAP-43) fusion proteins to growth cones in cultured rat embryonic neurons. Neuron. 1991 Mar;6(3):411–420. doi: 10.1016/0896-6273(91)90249-y. [DOI] [PubMed] [Google Scholar]
  20. Okabe S., Hirokawa N. Rapid turnover of microtubule-associated protein MAP2 in the axon revealed by microinjection of biotinylated MAP2 into cultured neurons. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4127–4131. doi: 10.1073/pnas.86.11.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Otto E., Kunimoto M., McLaughlin T., Bennett V. Isolation and characterization of cDNAs encoding human brain ankyrins reveal a family of alternatively spliced genes. J Cell Biol. 1991 Jul;114(2):241–253. doi: 10.1083/jcb.114.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Papandrikopoulou A., Doll T., Tucker R. P., Garner C. C., Matus A. Embryonic MAP2 lacks the cross-linking sidearm sequences and dendritic targeting signal of adult MAP2. Nature. 1989 Aug 24;340(6235):650–652. doi: 10.1038/340650a0. [DOI] [PubMed] [Google Scholar]
  23. Schachner M., Hedley-Whyte E. T., Hsu D. W., Schoonmaker G., Bignami A. Ultrastructural localization of glial fibrillary acidic protein in mouse cerebellum by immunoperoxidase labeling. J Cell Biol. 1977 Oct;75(1):67–73. doi: 10.1083/jcb.75.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES