Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Jan 1;132(1):77–90. doi: 10.1083/jcb.132.1.77

Identification and localization of an actin-binding motif that is unique to the epsilon isoform of protein kinase C and participates in the regulation of synaptic function

PMCID: PMC2120693  PMID: 8567732

Abstract

Individual isoforms of the protein kinase C (PKC) family of kinases may have assumed distinct responsibilities for the control of complex and diverse cellular functions. In this study, we show that an isoform specific interaction between PKC epsilon and filamentous actin may serve as a necessary prelude to the enhancement of glutamate exocytosis from nerve terminals. Using a combination of cosedimentation, overlay, and direct binding assays, we demonstrate that filamentous actin is a principal anchoring protein for PKC epsilon within intact nerve endings. The unusual stability and direct nature of this physical interaction indicate that actin filaments represent a new class of PKC- binding protein. The binding of PKC epsilon to actin required that the kinase be activated, presumably to expose a cryptic binding site that we have identified and shown to be located between the first and second cysteine-rich regions within the regulatory domain of only this individual isoform of PKC. Arachidonic acid (AA) synergistically interacted with diacylglycerol to stimulate actin binding to PKC epsilon. Once established, this protein-protein interaction securely anchored PKC epsilon to the cytoskeletal matrix while also serving as a chaperone that maintained the kinase in a catalytically active conformation. Thus, actin appears to be a bifunctional anchoring protein that is specific for the PKC epsilon isoform. The assembly of this isoform-specific signaling complex appears to play a primary role in the PKC-dependent facilitation of glutamate exocytosis.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akita Y., Ohno S., Yajima Y., Konno Y., Saido T. C., Mizuno K., Chida K., Osada S., Kuroki T., Kawashima S. Overproduction of a Ca(2+)-independent protein kinase C isozyme, nPKC epsilon, increases the secretion of prolactin from thyrotropin-releasing hormone-stimulated rat pituitary GH4C1 cells. J Biol Chem. 1994 Feb 11;269(6):4653–4660. [PubMed] [Google Scholar]
  2. Bazzi M. D., Nelsestuen G. L. Properties of membrane-inserted protein kinase C. Biochemistry. 1988 Oct 4;27(20):7589–7593. doi: 10.1021/bi00420a003. [DOI] [PubMed] [Google Scholar]
  3. Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
  4. Chapline C., Ramsay K., Klauck T., Jaken S. Interaction cloning of protein kinase C substrates. J Biol Chem. 1993 Apr 5;268(10):6858–6861. [PubMed] [Google Scholar]
  5. Conner-Kerr T. A., Simmons D. R., Peterson G. M., Terrian D. M. Evidence for the corelease of dynorphin and glutamate from rat hippocampal mossy fiber terminals. J Neurochem. 1993 Aug;61(2):627–636. doi: 10.1111/j.1471-4159.1993.tb02167.x. [DOI] [PubMed] [Google Scholar]
  6. Dekker L. V., Parker P. J. Protein kinase C--a question of specificity. Trends Biochem Sci. 1994 Feb;19(2):73–77. doi: 10.1016/0968-0004(94)90038-8. [DOI] [PubMed] [Google Scholar]
  7. Disatnik M. H., Buraggi G., Mochly-Rosen D. Localization of protein kinase C isozymes in cardiac myocytes. Exp Cell Res. 1994 Feb;210(2):287–297. doi: 10.1006/excr.1994.1041. [DOI] [PubMed] [Google Scholar]
  8. Fey E. G., Wan K. M., Penman S. Epithelial cytoskeletal framework and nuclear matrix-intermediate filament scaffold: three-dimensional organization and protein composition. J Cell Biol. 1984 Jun;98(6):1973–1984. doi: 10.1083/jcb.98.6.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Herrero I., Miras-Portugal M. T., Sánchez-Prieto J. Positive feedback of glutamate exocytosis by metabotropic presynaptic receptor stimulation. Nature. 1992 Nov 12;360(6400):163–166. doi: 10.1038/360163a0. [DOI] [PubMed] [Google Scholar]
  10. Huang Y. Y., Colley P. A., Routtenberg A. Postsynaptic then presynaptic protein kinase C activity may be necessary for long-term potentiation. Neuroscience. 1992 Aug;49(4):819–827. doi: 10.1016/0306-4522(92)90359-a. [DOI] [PubMed] [Google Scholar]
  11. Hug H., Sarre T. F. Protein kinase C isoenzymes: divergence in signal transduction? Biochem J. 1993 Apr 15;291(Pt 2):329–343. doi: 10.1042/bj2910329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ito A., Saito N., Hirata M., Kose A., Tsujino T., Yoshihara C., Ogita K., Kishimoto A., Nishizuka Y., Tanaka C. Immunocytochemical localization of the alpha subspecies of protein kinase C in rat brain. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3195–3199. doi: 10.1073/pnas.87.8.3195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kasahara K., Kikkawa U. Distinct effects of saturated fatty acids on protein kinase C subspecies. J Biochem. 1995 Mar;117(3):648–653. doi: 10.1093/oxfordjournals.jbchem.a124758. [DOI] [PubMed] [Google Scholar]
  14. Kazanietz M. G., Krausz K. W., Blumberg P. M. Differential irreversible insertion of protein kinase C into phospholipid vesicles by phorbol esters and related activators. J Biol Chem. 1992 Oct 15;267(29):20878–20886. [PubMed] [Google Scholar]
  15. Kiley S. C., Parker P. J., Fabbro D., Jaken S. Selective redistribution of protein kinase C isozymes by thapsigargin and staurosporine. Carcinogenesis. 1992 Nov;13(11):1997–2001. doi: 10.1093/carcin/13.11.1997. [DOI] [PubMed] [Google Scholar]
  16. Koide H., Ogita K., Kikkawa U., Nishizuka Y. Isolation and characterization of the epsilon subspecies of protein kinase C from rat brain. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1149–1153. doi: 10.1073/pnas.89.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kose A., Ito A., Saito N., Tanaka C. Electron microscopic localization of gamma- and beta II-subspecies of protein kinase C in rat hippocampus. Brain Res. 1990 Jun 4;518(1-2):209–217. doi: 10.1016/0006-8993(90)90974-g. [DOI] [PubMed] [Google Scholar]
  18. Lehel C., Oláh Z., Jakab G., Szállási Z., Petrovics G., Harta G., Blumberg P. M., Anderson W. B. Protein kinase C epsilon subcellular localization domains and proteolytic degradation sites. A model for protein kinase C conformational changes. J Biol Chem. 1995 Aug 18;270(33):19651–19658. doi: 10.1074/jbc.270.33.19651. [DOI] [PubMed] [Google Scholar]
  19. Liao L., Hyatt S. L., Chapline C., Jaken S. Protein kinase C domains involved in interactions with other proteins. Biochemistry. 1994 Feb 8;33(5):1229–1233. doi: 10.1021/bi00171a024. [DOI] [PubMed] [Google Scholar]
  20. Lim N. F., Nowycky M. C., Bookman R. J. Direct measurement of exocytosis and calcium currents in single vertebrate nerve terminals. Nature. 1990 Mar 29;344(6265):449–451. doi: 10.1038/344449a0. [DOI] [PubMed] [Google Scholar]
  21. Madison D. V., Malenka R. C., Nicoll R. A. Mechanisms underlying long-term potentiation of synaptic transmission. Annu Rev Neurosci. 1991;14:379–397. doi: 10.1146/annurev.ne.14.030191.002115. [DOI] [PubMed] [Google Scholar]
  22. Merchenthaler I., Liposits Z., Reid J. J., Wetsel W. C. Light and electron microscopic immunocytochemical localization of PKC delta immunoreactivity in the rat central nervous system. J Comp Neurol. 1993 Oct 15;336(3):378–399. doi: 10.1002/cne.903360306. [DOI] [PubMed] [Google Scholar]
  23. Mochly-Rosen D., Khaner H., Lopez J. Identification of intracellular receptor proteins for activated protein kinase C. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3997–4000. doi: 10.1073/pnas.88.9.3997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mochly-Rosen D. Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science. 1995 Apr 14;268(5208):247–251. doi: 10.1126/science.7716516. [DOI] [PubMed] [Google Scholar]
  25. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
  26. Omary M. B., Baxter G. T., Chou C. F., Riopel C. L., Lin W. Y., Strulovici B. PKC epsilon-related kinase associates with and phosphorylates cytokeratin 8 and 18. J Cell Biol. 1992 May;117(3):583–593. doi: 10.1083/jcb.117.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pears C., Schaap D., Parker P. J. The regulatory domain of protein kinase C-epsilon restricts the catalytic-domain-specificity. Biochem J. 1991 May 15;276(Pt 1):257–260. doi: 10.1042/bj2760257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ron D., Chen C. H., Caldwell J., Jamieson L., Orr E., Mochly-Rosen D. Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):839–843. doi: 10.1073/pnas.91.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Saido T. C., Mizuno K., Konno Y., Osada S., Ohno S., Suzuki K. Purification and characterization of protein kinase C epsilon from rabbit brain. Biochemistry. 1992 Jan 21;31(2):482–490. doi: 10.1021/bi00117a026. [DOI] [PubMed] [Google Scholar]
  30. Saito N., Itouji A., Totani Y., Osawa I., Koide H., Fujisawa N., Ogita K., Tanaka C. Cellular and intracellular localization of epsilon-subspecies of protein kinase C in the rat brain; presynaptic localization of the epsilon-subspecies. Brain Res. 1993 Apr 2;607(1-2):241–248. doi: 10.1016/0006-8993(93)91512-q. [DOI] [PubMed] [Google Scholar]
  31. Schaap D., Hsuan J., Totty N., Parker P. J. Proteolytic activation of protein kinase C-epsilon. Eur J Biochem. 1990 Jul 31;191(2):431–435. doi: 10.1111/j.1432-1033.1990.tb19139.x. [DOI] [PubMed] [Google Scholar]
  32. Schulz P. E., Cook E. P., Johnston D. Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J Neurosci. 1994 Sep;14(9):5325–5337. doi: 10.1523/JNEUROSCI.14-09-05325.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Staudinger J., Zhou J., Burgess R., Elledge S. J., Olson E. N. PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J Cell Biol. 1995 Feb;128(3):263–271. doi: 10.1083/jcb.128.3.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stevens C. F., Wang Y. Changes in reliability of synaptic function as a mechanism for plasticity. Nature. 1994 Oct 20;371(6499):704–707. doi: 10.1038/371704a0. [DOI] [PubMed] [Google Scholar]
  35. Sublette E., Naik M. U., Jiang X., Osten P., Valsamis H., Osada S., Ohno S., Sacktor T. C. Evidence for a new, high-molecular weight isoform of protein kinase C in rat hippocampus. Neurosci Lett. 1993 Sep 3;159(1-2):175–178. doi: 10.1016/0304-3940(93)90827-8. [DOI] [PubMed] [Google Scholar]
  36. Sun H. Q., Wooten D. C., Janmey P. A., Yin H. L. The actin side-binding domain of gelsolin also caps actin filaments. Implications for actin filament severing. J Biol Chem. 1994 Apr 1;269(13):9473–9479. [PubMed] [Google Scholar]
  37. Szallasi Z., Smith C. B., Blumberg P. M. Dissociation of phorbol esters leads to immediate redistribution to the cytosol of protein kinases C alpha and C delta in mouse keratinocytes. J Biol Chem. 1994 Nov 4;269(44):27159–27162. [PubMed] [Google Scholar]
  38. Terrian D. M., Johnston D., Claiborne B. J., Ansah-Yiadom R., Strittmatter W. J., Rea M. A. Glutamate and dynorphin release from a subcellular fraction enriched in hippocampal mossy fiber synaptosomes. Brain Res Bull. 1988 Sep;21(3):343–351. doi: 10.1016/0361-9230(88)90146-3. [DOI] [PubMed] [Google Scholar]
  39. Terrian D. M. Persistent enhancement of sustained calcium-dependent glutamate release by phorbol esters: requirement for localized calcium entry. J Neurochem. 1995 Jan;64(1):172–180. doi: 10.1046/j.1471-4159.1995.64010172.x. [DOI] [PubMed] [Google Scholar]
  40. Terrian D. M., Ways D. K., Gannon R. L. A presynaptic role for protein kinase C in hippocampal mossy fiber synaptic transmission. Hippocampus. 1991 Jul;1(3):303–314. doi: 10.1002/hipo.450010321. [DOI] [PubMed] [Google Scholar]
  41. Terrian D. M., Ways D. K., Gannon R. L., Zetts D. A. Transduction of a protein kinase C-generated signal into the long-lasting facilitation of glutamate release. Hippocampus. 1993 Apr;3(2):205–220. doi: 10.1002/hipo.450030212. [DOI] [PubMed] [Google Scholar]
  42. Terrian D. M., Ways D. K. Persistent enhancement of sustained calcium-dependent glutamate release by phorbol esters: role of calmodulin-independent serine/threonine phosphorylation and actin disassembly. J Neurochem. 1995 Jan;64(1):181–190. doi: 10.1046/j.1471-4159.1995.64010181.x. [DOI] [PubMed] [Google Scholar]
  43. Vancompernolle K., Vandekerckhove J., Bubb M. R., Korn E. D. The interfaces of actin and Acanthamoeba actobindin. Identification of a new actin-binding motif. J Biol Chem. 1991 Aug 15;266(23):15427–15431. [PubMed] [Google Scholar]
  44. Vandekerckhove J., Vancompernolle K. Structural relationships of actin-binding proteins. Curr Opin Cell Biol. 1992 Feb;4(1):36–42. doi: 10.1016/0955-0674(92)90056-i. [DOI] [PubMed] [Google Scholar]
  45. Ways K., Riddle R., Ways M., Cook P. Effect of phorbol esters on cytosolic protein kinase C content and activity in the human monoblastoid U937 cell. J Biol Chem. 1991 Jan 15;266(2):1258–1264. [PubMed] [Google Scholar]
  46. Wolf M., Sahyoun N. Protein kinase C and phosphatidylserine bind to Mr 110,000/115,000 polypeptides enriched in cytoskeletal and postsynaptic density preparations. J Biol Chem. 1986 Oct 5;261(28):13327–13332. [PubMed] [Google Scholar]
  47. Yamamoto C., Higashima M., Sawada S. Quantal analysis of potentiating action of phorbol ester on synaptic transmission in the hippocampus. Neurosci Res. 1987 Oct;5(1):28–38. doi: 10.1016/0168-0102(87)90021-6. [DOI] [PubMed] [Google Scholar]
  48. Zalewski P. D., Forbes I. J., Giannakis C., Betts W. H. Regulation of protein kinase C by Zn(2+)-dependent interaction with actin. Biochem Int. 1991 Aug;24(6):1103–1110. [PubMed] [Google Scholar]
  49. Zhang L., Dorman R. V. Synergistic potentiation of glutamate release by arachidonic acid and oleoyl-acetyl-glycerol. Brain Res Bull. 1993;32(4):437–441. doi: 10.1016/0361-9230(93)90212-t. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES