Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Jan 1;132(1):101–109. doi: 10.1083/jcb.132.1.101

Dictyostelium myosin heavy chain kinase A regulates myosin localization during growth and development

PMCID: PMC2120697  PMID: 8567716

Abstract

Phosphorylation of the Dictyostelium myosin II heavy chain (MHC) has a key role in regulating myosin localization in vivo and drives filament disassembly in vitro. Previous molecular analysis of the Dictyostelium myosin II heavy chain kinase (MHCK A) gene has demonstrated that the catalytic domain of this enzyme is extremely novel, showing no significant similarity to the known classes of protein kinases (Futey, L. M., Q. G. Medley, G. P. Cote, and T. T. Egelhoff. 1995. J. Biol. Chem. 270:523-529). To address the physiological roles of this enzyme, we have analyzed the cellular consequences of MHCK A gene disruption (mhck A- cells) and MHCK A overexpression (MHCK A++ cells). The mhck A- cells are viable and competent for tested myosin-based contractile events, but display partial defects in myosin localization. Both growth phase and developed mhck A- cells show substantially reduced MHC kinase activity in crude lysates, as well as significant overassembly of myosin into the Triton-resistant cytoskeletal fractions. MHCK A++ cells display elevated levels of MHC kinase activity in crude extracts, and show reduced assembly of myosin into Triton-resistant cytoskeletal fractions. MHCK A++ cells show reduced growth rates in suspension, becoming large and multinucleated, and arrest at the mound stage during development. These results demonstrate that MHCK A functions in vivo as a protein kinase with physiological roles in regulating myosin II localization and assembly in Dictyostelium cells during both growth and developmental stages.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berlot C. H., Devreotes P. N., Spudich J. A. Chemoattractant-elicited increases in Dictyostelium myosin phosphorylation are due to changes in myosin localization and increases in kinase activity. J Biol Chem. 1987 Mar 15;262(8):3918–3926. [PubMed] [Google Scholar]
  2. Berlot C. H., Spudich J. A., Devreotes P. N. Chemoattractant-elicited increases in myosin phosphorylation in Dictyostelium. Cell. 1985 Nov;43(1):307–314. doi: 10.1016/0092-8674(85)90036-4. [DOI] [PubMed] [Google Scholar]
  3. Boyle W. J., van der Geer P., Hunter T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 1991;201:110–149. doi: 10.1016/0076-6879(91)01013-r. [DOI] [PubMed] [Google Scholar]
  4. Conti M. A., Sellers J. R., Adelstein R. S., Elzinga M. Identification of the serine residue phosphorylated by protein kinase C in vertebrate nonmuscle myosin heavy chains. Biochemistry. 1991 Jan 29;30(4):966–970. doi: 10.1021/bi00218a012. [DOI] [PubMed] [Google Scholar]
  5. Côté G. P., McCrea S. M. Selective removal of the carboxyl-terminal tail end of the Dictyostelium myosin II heavy chain by chymotrypsin. J Biol Chem. 1987 Sep 25;262(27):13033–13038. [PubMed] [Google Scholar]
  6. De Lozanne A., Berlot C. H., Leinwand L. A., Spudich J. A. Expression in Escherichia coli of a functional Dictyostelium myosin tail fragment. J Cell Biol. 1987 Dec;105(6 Pt 2):2999–3005. doi: 10.1083/jcb.105.6.2999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Lozanne A., Spudich J. A. Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science. 1987 May 29;236(4805):1086–1091. doi: 10.1126/science.3576222. [DOI] [PubMed] [Google Scholar]
  8. Dharmawardhane S., Warren V., Hall A. L., Condeelis J. Changes in the association of actin-binding proteins with the actin cytoskeleton during chemotactic stimulation of Dictyostelium discoideum. Cell Motil Cytoskeleton. 1989;13(1):57–63. doi: 10.1002/cm.970130107. [DOI] [PubMed] [Google Scholar]
  9. Dynes J. L., Firtel R. A. Molecular complementation of a genetic marker in Dictyostelium using a genomic DNA library. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7966–7970. doi: 10.1073/pnas.86.20.7966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Egelhoff T. T., Brown S. S., Spudich J. A. Spatial and temporal control of nonmuscle myosin localization: identification of a domain that is necessary for myosin filament disassembly in vivo. J Cell Biol. 1991 Feb;112(4):677–688. doi: 10.1083/jcb.112.4.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Egelhoff T. T., Lee R. J., Spudich J. A. Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Cell. 1993 Oct 22;75(2):363–371. doi: 10.1016/0092-8674(93)80077-r. [DOI] [PubMed] [Google Scholar]
  12. Fukui Y., De Lozanne A., Spudich J. A. Structure and function of the cytoskeleton of a Dictyostelium myosin-defective mutant. J Cell Biol. 1990 Feb;110(2):367–378. doi: 10.1083/jcb.110.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Futey L. M., Medley Q. G., Côté G. P., Egelhoff T. T. Structural analysis of myosin heavy chain kinase A from Dictyostelium. Evidence for a highly divergent protein kinase domain, an amino-terminal coiled-coil domain, and a domain homologous to the beta-subunit of heterotrimeric G proteins. J Biol Chem. 1995 Jan 13;270(2):523–529. doi: 10.1074/jbc.270.2.523. [DOI] [PubMed] [Google Scholar]
  14. Gerisch G., Albrecht R., De Hostos E., Wallraff E., Heizer C., Kreitmeier M., Müller-Taubenberger A. Actin-associated proteins in motility and chemotaxis of Dictyostelium cells. Symp Soc Exp Biol. 1993;47:297–315. [PubMed] [Google Scholar]
  15. Hadwiger J. A., Firtel R. A. Analysis of G alpha 4, a G-protein subunit required for multicellular development in Dictyostelium. Genes Dev. 1992 Jan;6(1):38–49. doi: 10.1101/gad.6.1.38. [DOI] [PubMed] [Google Scholar]
  16. Jay P. Y., Pham P. A., Wong S. A., Elson E. L. A mechanical function of myosin II in cell motility. J Cell Sci. 1995 Jan;108(Pt 1):387–393. doi: 10.1242/jcs.108.1.387. [DOI] [PubMed] [Google Scholar]
  17. Kelley C. A., Oberman F., Yisraeli J. K., Adelstein R. S. A Xenopus nonmuscle myosin heavy chain isoform is phosphorylated by cyclin-p34cdc2 kinase during meiosis. J Biol Chem. 1995 Jan 20;270(3):1395–1401. doi: 10.1074/jbc.270.3.1395. [DOI] [PubMed] [Google Scholar]
  18. Knecht D. A., Cohen S. M., Loomis W. F., Lodish H. F. Developmental regulation of Dictyostelium discoideum actin gene fusions carried on low-copy and high-copy transformation vectors. Mol Cell Biol. 1986 Nov;6(11):3973–3983. doi: 10.1128/mcb.6.11.3973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kuczmarski E. R., Spudich J. A. Regulation of myosin self-assembly: phosphorylation of Dictyostelium heavy chain inhibits formation of thick filaments. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7292–7296. doi: 10.1073/pnas.77.12.7292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee R. J., Egelhoff T. T., Spudich J. A. Molecular genetic truncation analysis of filament assembly and phosphorylation domains of Dictyostelium myosin heavy chain. J Cell Sci. 1994 Oct;107(Pt 10):2875–2886. doi: 10.1242/jcs.107.10.2875. [DOI] [PubMed] [Google Scholar]
  21. Ludowyke R. I., Peleg I., Beaven M. A., Adelstein R. S. Antigen-induced secretion of histamine and the phosphorylation of myosin by protein kinase C in rat basophilic leukemia cells. J Biol Chem. 1989 Jul 25;264(21):12492–12501. [PubMed] [Google Scholar]
  22. Lück-Vielmetter D., Schleicher M., Grabatin B., Wippler J., Gerisch G. Replacement of threonine residues by serine and alanine in a phosphorylatable heavy chain fragment of Dictyostelium myosin II. FEBS Lett. 1990 Aug 20;269(1):239–243. doi: 10.1016/0014-5793(90)81163-i. [DOI] [PubMed] [Google Scholar]
  23. Manstein D. J., Titus M. A., De Lozanne A., Spudich J. A. Gene replacement in Dictyostelium: generation of myosin null mutants. EMBO J. 1989 Mar;8(3):923–932. doi: 10.1002/j.1460-2075.1989.tb03453.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maruta H., Baltes W., Dieter P., Marmé D., Gerisch G. Myosin heavy chain kinase inactivated by Ca2+/calmodulin from aggregating cells of Dictyostelium discoideum. EMBO J. 1983;2(4):535–542. doi: 10.1002/j.1460-2075.1983.tb01459.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Murakami N., Healy-Louie G., Elzinga M. Amino acid sequence around the serine phosphorylated by casein kinase II in brain myosin heavy chain. J Biol Chem. 1990 Jan 15;265(2):1041–1047. [PubMed] [Google Scholar]
  26. O'Halloran T. J., Ravid S., Spudich J. A. Expression of Dictyostelium myosin tail segments in Escherichia coli: domains required for assembly and phosphorylation. J Cell Biol. 1990 Jan;110(1):63–70. doi: 10.1083/jcb.110.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pasternak C., Spudich J. A., Elson E. L. Capping of surface receptors and concomitant cortical tension are generated by conventional myosin. Nature. 1989 Oct 12;341(6242):549–551. doi: 10.1038/341549a0. [DOI] [PubMed] [Google Scholar]
  28. Ravid S., Spudich J. A. Membrane-bound Dictyostelium myosin heavy chain kinase: a developmentally regulated substrate-specific member of the protein kinase C family. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5877–5881. doi: 10.1073/pnas.89.13.5877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ravid S., Spudich J. A. Myosin heavy chain kinase from developed Dictyostelium cells. Purification and characterization. J Biol Chem. 1989 Sep 5;264(25):15144–15150. [PubMed] [Google Scholar]
  30. Rothblatt J., Schekman R. A hitchhiker's guide to analysis of the secretory pathway in yeast. Methods Cell Biol. 1989;32:3–36. doi: 10.1016/s0091-679x(08)61165-6. [DOI] [PubMed] [Google Scholar]
  31. Ruppel K. M., Uyeda T. Q., Spudich J. A. Role of highly conserved lysine 130 of myosin motor domain. In vivo and in vitro characterization of site specifically mutated myosin. J Biol Chem. 1994 Jul 22;269(29):18773–18780. [PubMed] [Google Scholar]
  32. Spudich A. Isolation of the actin cytoskeleton from amoeboid cells of Dictyostelium. Methods Cell Biol. 1987;28:209–214. doi: 10.1016/s0091-679x(08)61646-5. [DOI] [PubMed] [Google Scholar]
  33. Spudich J. A. In pursuit of myosin function. Cell Regul. 1989 Nov;1(1):1–11. doi: 10.1091/mbc.1.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sussman M. Cultivation and synchronous morphogenesis of Dictyostelium under controlled experimental conditions. Methods Cell Biol. 1987;28:9–29. doi: 10.1016/s0091-679x(08)61635-0. [DOI] [PubMed] [Google Scholar]
  35. Tan J. L., Ravid S., Spudich J. A. Control of nonmuscle myosins by phosphorylation. Annu Rev Biochem. 1992;61:721–759. doi: 10.1146/annurev.bi.61.070192.003445. [DOI] [PubMed] [Google Scholar]
  36. Vaillancourt J. P., Lyons C., Côté G. P. Identification of two phosphorylated threonines in the tail region of Dictyostelium myosin II. J Biol Chem. 1988 Jul 25;263(21):10082–10087. [PubMed] [Google Scholar]
  37. Wessels D., Soll D. R., Knecht D., Loomis W. F., De Lozanne A., Spudich J. Cell motility and chemotaxis in Dictyostelium amebae lacking myosin heavy chain. Dev Biol. 1988 Jul;128(1):164–177. doi: 10.1016/0012-1606(88)90279-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES