Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Jan 1;132(1):227–238. doi: 10.1083/jcb.132.1.227

Beta 1 integrin-dependent and -independent polymerization of fibronectin

PMCID: PMC2120698  PMID: 8567726

Abstract

The mouse cell line GD25, which lacks expression of the beta 1 family of integrin heterodimers due to disruption of the beta 1 integrin subunit gene, was used for expression of full-length cDNA coding for splice variant A of the mouse beta 1 integrin subunit. In a stably transformed clone (GD25-beta 1A), the expressed protein was found to form functional heterodimeric receptors together with the subunits alpha 3, alpha 5, and alpha 6. Both GD25 and GD25-beta 1A attached to fibronectin and formed focal contacts which contained alpha v beta 3, but no detectable alpha 5 beta 1A. The presence of GRGDS peptide allowed alpha 5 beta 1A to locate to focal contacts of GD25-beta 1A cultured on fibronectin, while the beta 1-null GD25 cells were unable to attach under these conditions. Affinity chromatography revealed that alpha 5 beta 1A and alpha v beta 3 could bind to a large cell-binding fragment of fibronectin. alpha 5 beta 1A strongly promoted polymerization of fibronectin into a fibrillar network on top of the cells. Whereas little alpha v beta 3 was colocalized with the fibronectin fibrils in GD25-beta 1A cells, this integrin was able to support fibronectin fibril polymerization in GD25 cells. However, the alpha v beta 3-induced polymerization was less efficient and occurred mainly in dense cultures of the GD25 cells. Thus, while both alpha 5 beta 1A and alpha v beta 3 are able to support adhesion to fibronectin, alpha v beta 3 dominates in the formation of focal contacts, and alpha 5 beta 1A has a prime function in fibronectin matrix assembly. This is the first report on fibronectin matrix assembly in the absence of beta 1 integrins.

Full Text

The Full Text of this article is available as a PDF (4.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auffray C., Rougeon F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem. 1980 Jun;107(2):303–314. doi: 10.1111/j.1432-1033.1980.tb06030.x. [DOI] [PubMed] [Google Scholar]
  2. Aumailley M., Mann K., von der Mark H., Timpl R. Cell attachment properties of collagen type VI and Arg-Gly-Asp dependent binding to its alpha 2(VI) and alpha 3(VI) chains. Exp Cell Res. 1989 Apr;181(2):463–474. doi: 10.1016/0014-4827(89)90103-1. [DOI] [PubMed] [Google Scholar]
  3. Balzac F., Belkin A. M., Koteliansky V. E., Balabanov Y. V., Altruda F., Silengo L., Tarone G. Expression and functional analysis of a cytoplasmic domain variant of the beta 1 integrin subunit. J Cell Biol. 1993 Apr;121(1):171–178. doi: 10.1083/jcb.121.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Balzac F., Retta S. F., Albini A., Melchiorri A., Koteliansky V. E., Geuna M., Silengo L., Tarone G. Expression of beta 1B integrin isoform in CHO cells results in a dominant negative effect on cell adhesion and motility. J Cell Biol. 1994 Oct;127(2):557–565. doi: 10.1083/jcb.127.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bottger B. A., Hedin U., Johansson S., Thyberg J. Integrin-type fibronectin receptors of rat arterial smooth muscle cells: isolation, partial characterization and role in cytoskeletal organization and control of differentiated properties. Differentiation. 1989 Aug;41(2):158–167. doi: 10.1111/j.1432-0436.1989.tb00743.x. [DOI] [PubMed] [Google Scholar]
  6. Burridge K., Nuckolls G., Otey C., Pavalko F., Simon K., Turner C. Actin-membrane interaction in focal adhesions. Cell Differ Dev. 1990 Dec 2;32(3):337–342. doi: 10.1016/0922-3371(90)90048-2. [DOI] [PubMed] [Google Scholar]
  7. Busk M., Pytela R., Sheppard D. Characterization of the integrin alpha v beta 6 as a fibronectin-binding protein. J Biol Chem. 1992 Mar 25;267(9):5790–5796. [PubMed] [Google Scholar]
  8. Charo I. F., Nannizzi L., Smith J. W., Cheresh D. A. The vitronectin receptor alpha v beta 3 binds fibronectin and acts in concert with alpha 5 beta 1 in promoting cellular attachment and spreading on fibronectin. J Cell Biol. 1990 Dec;111(6 Pt 1):2795–2800. doi: 10.1083/jcb.111.6.2795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Damsky C. H., Werb Z. Signal transduction by integrin receptors for extracellular matrix: cooperative processing of extracellular information. Curr Opin Cell Biol. 1992 Oct;4(5):772–781. doi: 10.1016/0955-0674(92)90100-q. [DOI] [PubMed] [Google Scholar]
  10. Dejana E., Colella S., Conforti G., Abbadini M., Gaboli M., Marchisio P. C. Fibronectin and vitronectin regulate the organization of their respective Arg-Gly-Asp adhesion receptors in cultured human endothelial cells. J Cell Biol. 1988 Sep;107(3):1215–1223. doi: 10.1083/jcb.107.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dzamba B. J., Bultmann H., Akiyama S. K., Peters D. M. Substrate-specific binding of the amino terminus of fibronectin to an integrin complex in focal adhesions. J Biol Chem. 1994 Jul 29;269(30):19646–19652. [PubMed] [Google Scholar]
  12. Forsberg E., Ek B., Engström A., Johansson S. Purification and characterization of integrin alpha 9 beta 1. Exp Cell Res. 1994 Jul;213(1):183–190. doi: 10.1006/excr.1994.1189. [DOI] [PubMed] [Google Scholar]
  13. Fässler R., Pfaff M., Murphy J., Noegel A. A., Johansson S., Timpl R., Albrecht R. Lack of beta 1 integrin gene in embryonic stem cells affects morphology, adhesion, and migration but not integration into the inner cell mass of blastocysts. J Cell Biol. 1995 Mar;128(5):979–988. doi: 10.1083/jcb.128.5.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Giancotti F. G., Ruoslahti E. Elevated levels of the alpha 5 beta 1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells. Cell. 1990 Mar 9;60(5):849–859. doi: 10.1016/0092-8674(90)90098-y. [DOI] [PubMed] [Google Scholar]
  15. Guan J. L., Shalloway D. Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature. 1992 Aug 20;358(6388):690–692. doi: 10.1038/358690a0. [DOI] [PubMed] [Google Scholar]
  16. Gullberg D., Sjöberg G., Velling T., Sejersen T. Analysis of fibronectin and vitronectin receptors on human fetal skeletal muscle cells upon differentiation. Exp Cell Res. 1995 Sep;220(1):112–123. doi: 10.1006/excr.1995.1297. [DOI] [PubMed] [Google Scholar]
  17. Hedin U., Bottger B. A., Forsberg E., Johansson S., Thyberg J. Diverse effects of fibronectin and laminin on phenotypic properties of cultured arterial smooth muscle cells. J Cell Biol. 1988 Jul;107(1):307–319. doi: 10.1083/jcb.107.1.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heino J. Integrin-type extracellular matrix receptors in cancer and inflammation. Ann Med. 1993 Aug;25(4):335–342. doi: 10.3109/07853899309147294. [DOI] [PubMed] [Google Scholar]
  19. Holers V. M., Ruff T. G., Parks D. L., McDonald J. A., Ballard L. L., Brown E. J. Molecular cloning of a murine fibronectin receptor and its expression during inflammation. Expression of VLA-5 is increased in activated peritoneal macrophages in a manner discordant from major histocompatibility complex class II. J Exp Med. 1989 May 1;169(5):1589–1605. doi: 10.1084/jem.169.5.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  21. Jaken S., Leach K., Klauck T. Association of type 3 protein kinase C with focal contacts in rat embryo fibroblasts. J Cell Biol. 1989 Aug;109(2):697–704. doi: 10.1083/jcb.109.2.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Johansson S., Hök M. Substrate adhesion of rat hepatocytes: on the mechanism of attachment to fibronectin. J Cell Biol. 1984 Mar;98(3):810–817. doi: 10.1083/jcb.98.3.810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Koivunen E., Gay D. A., Ruoslahti E. Selection of peptides binding to the alpha 5 beta 1 integrin from phage display library. J Biol Chem. 1993 Sep 25;268(27):20205–20210. [PubMed] [Google Scholar]
  24. Kornberg L., Earp H. S., Parsons J. T., Schaller M., Juliano R. L. Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J Biol Chem. 1992 Nov 25;267(33):23439–23442. [PubMed] [Google Scholar]
  25. Languino L. R., Ruoslahti E. An alternative form of the integrin beta 1 subunit with a variant cytoplasmic domain. J Biol Chem. 1992 Apr 5;267(10):7116–7120. [PubMed] [Google Scholar]
  26. Miyamoto S., Akiyama S. K., Yamada K. M. Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science. 1995 Feb 10;267(5199):883–885. doi: 10.1126/science.7846531. [DOI] [PubMed] [Google Scholar]
  27. Moon K. Y., Shin K. S., Song W. K., Chung C. H., Ha D. B., Kang M. S. A candidate molecule for the matrix assembly receptor to the N-terminal 29-kDa fragment of fibronectin in chick myoblasts. J Biol Chem. 1994 Mar 11;269(10):7651–7657. [PubMed] [Google Scholar]
  28. Morla A., Zhang Z., Ruoslahti E. Superfibronectin is a functionally distinct form of fibronectin. Nature. 1994 Jan 13;367(6459):193–196. doi: 10.1038/367193a0. [DOI] [PubMed] [Google Scholar]
  29. Mosher D. F., Sottile J., Wu C., McDonald J. A. Assembly of extracellular matrix. Curr Opin Cell Biol. 1992 Oct;4(5):810–818. doi: 10.1016/0955-0674(92)90104-k. [DOI] [PubMed] [Google Scholar]
  30. Pytela R., Pierschbacher M. D., Ruoslahti E. A 125/115-kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5766–5770. doi: 10.1073/pnas.82.17.5766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Roman J., LaChance R. M., Broekelmann T. J., Kennedy C. J., Wayner E. A., Carter W. G., McDonald J. A. The fibronectin receptor is organized by extracellular matrix fibronectin: implications for oncogenic transformation and for cell recognition of fibronectin matrices. J Cell Biol. 1989 Jun;108(6):2529–2543. doi: 10.1083/jcb.108.6.2529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schlaepfer D. D., Hanks S. K., Hunter T., van der Geer P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature. 1994 Dec 22;372(6508):786–791. doi: 10.1038/372786a0. [DOI] [PubMed] [Google Scholar]
  33. Schultz J. F., Armant D. R. Beta 1- and beta 3-class integrins mediate fibronectin binding activity at the surface of developing mouse peri-implantation blastocysts. Regulation by ligand-induced mobilization of stored receptor. J Biol Chem. 1995 May 12;270(19):11522–11531. doi: 10.1074/jbc.270.19.11522. [DOI] [PubMed] [Google Scholar]
  34. Singer I. I., Scott S., Kawka D. W., Kazazis D. M., Gailit J., Ruoslahti E. Cell surface distribution of fibronectin and vitronectin receptors depends on substrate composition and extracellular matrix accumulation. J Cell Biol. 1988 Jun;106(6):2171–2182. doi: 10.1083/jcb.106.6.2171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Smilenov L., Forsberg E., Zeligman I., Sparrman M., Johansson S. Separation of fibronectin from a plasma gelatinase using immobilized metal affinity chromatography. FEBS Lett. 1992 May 18;302(3):227–230. doi: 10.1016/0014-5793(92)80447-o. [DOI] [PubMed] [Google Scholar]
  36. Stephens L. E., Sonne J. E., Fitzgerald M. L., Damsky C. H. Targeted deletion of beta 1 integrins in F9 embryonal carcinoma cells affects morphological differentiation but not tissue-specific gene expression. J Cell Biol. 1993 Dec;123(6 Pt 1):1607–1620. doi: 10.1083/jcb.123.6.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Woods A., Couchman J. R., Johansson S., Hök M. Adhesion and cytoskeletal organisation of fibroblasts in response to fibronectin fragments. EMBO J. 1986 Apr;5(4):665–670. doi: 10.1002/j.1460-2075.1986.tb04265.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Woods A., Couchman J. R. Protein kinase C involvement in focal adhesion formation. J Cell Sci. 1992 Feb;101(Pt 2):277–290. doi: 10.1242/jcs.101.2.277. [DOI] [PubMed] [Google Scholar]
  39. Woods A., Johansson S., Hök M. Fibronectin fibril formation involves cell interactions with two fibronectin domains. Exp Cell Res. 1988 Aug;177(2):272–283. doi: 10.1016/0014-4827(88)90461-2. [DOI] [PubMed] [Google Scholar]
  40. Wu C., Bauer J. S., Juliano R. L., McDonald J. A. The alpha 5 beta 1 integrin fibronectin receptor, but not the alpha 5 cytoplasmic domain, functions in an early and essential step in fibronectin matrix assembly. J Biol Chem. 1993 Oct 15;268(29):21883–21888. [PubMed] [Google Scholar]
  41. Wu C., Fields A. J., Kapteijn B. A., McDonald J. A. The role of alpha 4 beta 1 integrin in cell motility and fibronectin matrix assembly. J Cell Sci. 1995 Feb;108(Pt 2):821–829. doi: 10.1242/jcs.108.2.821. [DOI] [PubMed] [Google Scholar]
  42. Yang J. T., Rayburn H., Hynes R. O. Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development. 1993 Dec;119(4):1093–1105. doi: 10.1242/dev.119.4.1093. [DOI] [PubMed] [Google Scholar]
  43. Zhang Z., Morla A. O., Vuori K., Bauer J. S., Juliano R. L., Ruoslahti E. The alpha v beta 1 integrin functions as a fibronectin receptor but does not support fibronectin matrix assembly and cell migration on fibronectin. J Cell Biol. 1993 Jul;122(1):235–242. doi: 10.1083/jcb.122.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. van Kuppevelt T. H., Languino L. R., Gailit J. O., Suzuki S., Ruoslahti E. An alternative cytoplasmic domain of the integrin beta 3 subunit. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5415–5418. doi: 10.1073/pnas.86.14.5415. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES