Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Feb 1;132(3):475–485. doi: 10.1083/jcb.132.3.475

Human neural cell adhesion molecule L1 and rat homologue NILE are ligands for integrin alpha v beta 3

PMCID: PMC2120722  PMID: 8636223

Abstract

Integrin alpha v beta 3 is distinct in its capacity to recognize the sequence Arg-Gly-Asp (RGD) in many extra-cellular matrix (ECM) components. Here, we demonstrate that in addition to the recognition of ECM components, alpha v beta 3 can interact with the neural cell adhesion molecule L1-CAM; a member of the immunoglobulin superfamily (IgSF). M21 melanoma cells displayed significant Ca(++)-dependent adhesion and spreading on immunopurified rat L1 (NILE). This adhesion was found to be dependent on the expression of the alpha v-integrin subunit and could be significantly inhibited by an antibody to the alpha v beta 3 heterodimer. M21 cells also displayed some alpha v beta 3-dependent adhesion and spreading on immunopurified human L1. Ligation between this ligand and alpha v beta 3 was also observed to promote significant haptotactic cell migration. To map the site of alpha v beta 3 ligation we used recombinant L1 fragments comprising the entire extracellular domain of human L1. Significant alpha v beta 3-dependent adhesion and spreading was evident on a L1 fragment containing Ig-like domains 4, 5, and 6. Importantly, mutation of an RGD sequence present in the sixth Ig-like domain of L1 abrogated M21 cell adhesion. We conclude that alpha v beta 3-dependent recognition of human L1 is dependent on ligation of this RGD site. Despite high levels of L1 expression the M21 melanoma cells did not display significant adhesion via a homophilic L1-L1 interaction. These data suggest that M21 melanoma cells recognize and adhere to L1 through a mechanism that is primarily heterophilic and integrin dependent. Finally, we present evidence that melanoma cells can shed and deposit L1 in occluding ECM. In this regard, alpha v beta 3 may recognize L1 in a cell-cell or cell- substrate interaction.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ager A., Humphries M. J. Integrin alpha 4 beta 1: its structure, ligand-binding specificity and role in lymphocyte-endothelial cell interactions. Chem Immunol. 1991;50:55–74. [PubMed] [Google Scholar]
  2. Albelda S. M., Mette S. A., Elder D. E., Stewart R., Damjanovich L., Herlyn M., Buck C. A. Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res. 1990 Oct 15;50(20):6757–6764. [PubMed] [Google Scholar]
  3. Albelda S. M. Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab Invest. 1993 Jan;68(1):4–17. [PubMed] [Google Scholar]
  4. Bock E., Richter-Landsberg C., Faissner A., Schachner M. Demonstration of immunochemical identity between the nerve growth factor-inducible large external (NILE) glycoprotein and the cell adhesion molecule L1. EMBO J. 1985 Nov;4(11):2765–2768. doi: 10.1002/j.1460-2075.1985.tb04001.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheresh D. A., Spiro R. C. Biosynthetic and functional properties of an Arg-Gly-Asp-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen, and von Willebrand factor. J Biol Chem. 1987 Dec 25;262(36):17703–17711. [PubMed] [Google Scholar]
  6. Cheresh D. A. Structural and biologic properties of integrin-mediated cell adhesion. Clin Lab Med. 1992 Jun;12(2):217–236. [PubMed] [Google Scholar]
  7. Clyman R. I., Mauray F., Kramer R. H. Beta 1 and beta 3 integrins have different roles in the adhesion and migration of vascular smooth muscle cells on extracellular matrix. Exp Cell Res. 1992 Jun;200(2):272–284. doi: 10.1016/0014-4827(92)90173-6. [DOI] [PubMed] [Google Scholar]
  8. Felding-Habermann B., Mueller B. M., Romerdahl C. A., Cheresh D. A. Involvement of integrin alpha V gene expression in human melanoma tumorigenicity. J Clin Invest. 1992 Jun;89(6):2018–2022. doi: 10.1172/JCI115811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Felsenfeld D. P., Hynes M. A., Skoler K. M., Furley A. J., Jessell T. M. TAG-1 can mediate homophilic binding, but neurite outgrowth on TAG-1 requires an L1-like molecule and beta 1 integrins. Neuron. 1994 Mar;12(3):675–690. doi: 10.1016/0896-6273(94)90222-4. [DOI] [PubMed] [Google Scholar]
  10. Friedlander D. R., Milev P., Karthikeyan L., Margolis R. K., Margolis R. U., Grumet M. The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. J Cell Biol. 1994 May;125(3):669–680. doi: 10.1083/jcb.125.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grumet M., Flaccus A., Margolis R. U. Functional characterization of chondroitin sulfate proteoglycans of brain: interactions with neurons and neural cell adhesion molecules. J Cell Biol. 1993 Feb;120(3):815–824. doi: 10.1083/jcb.120.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Grumet M., Friedlander D. R., Edelman G. M. Evidence for the binding of Ng-CAM to laminin. Cell Adhes Commun. 1993 Sep;1(2):177–190. doi: 10.3109/15419069309095693. [DOI] [PubMed] [Google Scholar]
  13. Grumet M., Hoffman S., Chuong C. M., Edelman G. M. Polypeptide components and binding functions of neuron-glia cell adhesion molecules. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7989–7993. doi: 10.1073/pnas.81.24.7989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hemsley A., Arnheim N., Toney M. D., Cortopassi G., Galas D. J. A simple method for site-directed mutagenesis using the polymerase chain reaction. Nucleic Acids Res. 1989 Aug 25;17(16):6545–6551. doi: 10.1093/nar/17.16.6545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hlavin M. L., Lemmon V. Molecular structure and functional testing of human L1CAM: an interspecies comparison. Genomics. 1991 Oct;11(2):416–423. doi: 10.1016/0888-7543(91)90150-d. [DOI] [PubMed] [Google Scholar]
  16. Hubbe M., Kowitz A., Schirrmacher V., Schachner M., Altevogt P. L1 adhesion molecule on mouse leukocytes: regulation and involvement in endothelial cell binding. Eur J Immunol. 1993 Nov;23(11):2927–2931. doi: 10.1002/eji.1830231130. [DOI] [PubMed] [Google Scholar]
  17. Kobayashi H., Mizuki T., Wada A., Izumi F. Cell-cell contact modulates expression of cell adhesion molecule L1 in PC12 cells. Neuroscience. 1992 Jul;49(2):437–441. doi: 10.1016/0306-4522(92)90108-e. [DOI] [PubMed] [Google Scholar]
  18. Kobayashi M., Miura M., Asou H., Uyemura K. Molecular cloning of cell adhesion molecule L1 from human nervous tissue: a comparison of the primary sequences of L1 molecules of different origin. Biochim Biophys Acta. 1991 Oct 8;1090(2):238–240. doi: 10.1016/0167-4781(91)90108-x. [DOI] [PubMed] [Google Scholar]
  19. Kowitz A., Kadmon G., Eckert M., Schirrmacher V., Schachner M., Altevogt P. Expression and function of the neural cell adhesion molecule L1 in mouse leukocytes. Eur J Immunol. 1992 May;22(5):1199–1205. doi: 10.1002/eji.1830220514. [DOI] [PubMed] [Google Scholar]
  20. Kuhn T. B., Stoeckli E. T., Condrau M. A., Rathjen F. G., Sonderegger P. Neurite outgrowth on immobilized axonin-1 is mediated by a heterophilic interaction with L1(G4). J Cell Biol. 1991 Nov;115(4):1113–1126. doi: 10.1083/jcb.115.4.1113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kujat R., Miragall F., Krause D., Dermietzel R., Wrobel K. H. Immunolocalization of the neural cell adhesion molecule L1 in non-proliferating epithelial cells of the male urogenital tract. Histochem Cell Biol. 1995 Apr;103(4):311–321. doi: 10.1007/BF01457416. [DOI] [PubMed] [Google Scholar]
  22. Lagenaur C., Lemmon V. An L1-like molecule, the 8D9 antigen, is a potent substrate for neurite extension. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7753–7757. doi: 10.1073/pnas.84.21.7753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Leavesley D. I., Ferguson G. D., Wayner E. A., Cheresh D. A. Requirement of the integrin beta 3 subunit for carcinoma cell spreading or migration on vitronectin and fibrinogen. J Cell Biol. 1992 Jun;117(5):1101–1107. doi: 10.1083/jcb.117.5.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lemmon V., Farr K. L., Lagenaur C. L1-mediated axon outgrowth occurs via a homophilic binding mechanism. Neuron. 1989 Jun;2(6):1597–1603. doi: 10.1016/0896-6273(89)90048-2. [DOI] [PubMed] [Google Scholar]
  25. Lemmon V., McLoon S. C. The appearance of an L1-like molecule in the chick primary visual pathway. J Neurosci. 1986 Oct;6(10):2987–2994. doi: 10.1523/JNEUROSCI.06-10-02987.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lindner J., Rathjen F. G., Schachner M. L1 mono- and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum. 1983 Sep 29-Oct 5Nature. 305(5933):427–430. doi: 10.1038/305427a0. [DOI] [PubMed] [Google Scholar]
  27. Linnemann D., Raz A., Bock E. Differential expression of cell adhesion molecules in variants of K1735 melanoma cells differing in metastatic capacity. Int J Cancer. 1989 Apr 15;43(4):709–712. doi: 10.1002/ijc.2910430428. [DOI] [PubMed] [Google Scholar]
  28. Martini R., Schachner M. Immunoelectron microscopic localization of neural cell adhesion molecules (L1, N-CAM, and MAG) and their shared carbohydrate epitope and myelin basic protein in developing sciatic nerve. J Cell Biol. 1986 Dec;103(6 Pt 1):2439–2448. doi: 10.1083/jcb.103.6.2439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Miura M., Asou H., Kobayashi M., Uyemura K. Functional expression of a full-length cDNA coding for rat neural cell adhesion molecule L1 mediates homophilic intercellular adhesion and migration of cerebellar neurons. J Biol Chem. 1992 May 25;267(15):10752–10758. [PubMed] [Google Scholar]
  30. Miura M., Kobayashi M., Asou H., Uyemura K. Molecular cloning of cDNA encoding the rat neural cell adhesion molecule L1. Two L1 isoforms in the cytoplasmic region are produced by differential splicing. FEBS Lett. 1991 Sep 2;289(1):91–95. doi: 10.1016/0014-5793(91)80915-p. [DOI] [PubMed] [Google Scholar]
  31. Montgomery A. M., Reisfeld R. A., Cheresh D. A. Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8856–8860. doi: 10.1073/pnas.91.19.8856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Moolenaar C. E., Pieneman C., Walsh F. S., Mooi W. J., Michalides R. J. Alternative splicing of neural-cell-adhesion molecule mRNA in human small-cell lung-cancer cell line H69. Int J Cancer. 1992 May 8;51(2):238–243. doi: 10.1002/ijc.2910510212. [DOI] [PubMed] [Google Scholar]
  33. Moos M., Tacke R., Scherer H., Teplow D., Früh K., Schachner M. Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature. 1988 Aug 25;334(6184):701–703. doi: 10.1038/334701a0. [DOI] [PubMed] [Google Scholar]
  34. Mujoo K., Spiro R. C., Reisfeld R. A. Characterization of a unique glycoprotein antigen expressed on the surface of human neuroblastoma cells. J Biol Chem. 1986 Aug 5;261(22):10299–10305. [PubMed] [Google Scholar]
  35. Piali L., Hammel P., Uherek C., Bachmann F., Gisler R. H., Dunon D., Imhof B. A. CD31/PECAM-1 is a ligand for alpha v beta 3 integrin involved in adhesion of leukocytes to endothelium. J Cell Biol. 1995 Jul;130(2):451–460. doi: 10.1083/jcb.130.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Poltorak M., Shimoda K., Freed W. J. Cell adhesion molecules (CAMs) in adrenal medulla in situ and in vitro: enhancement of chromaffin cell L1/Ng-CAM expression by NGF. Exp Neurol. 1990 Oct;110(1):52–72. doi: 10.1016/0014-4886(90)90051-s. [DOI] [PubMed] [Google Scholar]
  37. Rader C., Stoeckli E. T., Ziegler U., Osterwalder T., Kunz B., Sonderegger P. Cell-cell adhesion by homophilic interaction of the neuronal recognition molecule axonin-1. Eur J Biochem. 1993 Jul 1;215(1):133–141. doi: 10.1111/j.1432-1033.1993.tb18015.x. [DOI] [PubMed] [Google Scholar]
  38. Rao Y., Wu X. F., Yip P., Gariepy J., Siu C. H. Structural characterization of a homophilic binding site in the neural cell adhesion molecule. J Biol Chem. 1993 Sep 25;268(27):20630–20638. [PubMed] [Google Scholar]
  39. Rathjen F. G., Schachner M. Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J. 1984 Jan;3(1):1–10. doi: 10.1002/j.1460-2075.1984.tb01753.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Reid R. A., Hemperly J. J. Variants of human L1 cell adhesion molecule arise through alternate splicing of RNA. J Mol Neurosci. 1992;3(3):127–135. doi: 10.1007/BF02919404. [DOI] [PubMed] [Google Scholar]
  41. Sadoul K., Sadoul R., Faissner A., Schachner M. Biochemical characterization of different molecular forms of the neural cell adhesion molecule L1. J Neurochem. 1988 Feb;50(2):510–521. doi: 10.1111/j.1471-4159.1988.tb02941.x. [DOI] [PubMed] [Google Scholar]
  42. Sanders L. C., Felding-Habermann B., Mueller B. M., Cheresh D. A. Role of alpha V integrins and vitronectin in human melanoma cell growth. Cold Spring Harb Symp Quant Biol. 1992;57:233–240. doi: 10.1101/sqb.1992.057.01.028. [DOI] [PubMed] [Google Scholar]
  43. Sonderegger P., Rathjen F. G. Regulation of axonal growth in the vertebrate nervous system by interactions between glycoproteins belonging to two subgroups of the immunoglobulin superfamily. J Cell Biol. 1992 Dec;119(6):1387–1394. doi: 10.1083/jcb.119.6.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Staunton D. E., Dustin M. L., Erickson H. P., Springer T. A. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell. 1990 Apr 20;61(2):243–254. doi: 10.1016/0092-8674(90)90805-o. [DOI] [PubMed] [Google Scholar]
  45. Thor G., Probstmeier R., Schachner M. Characterization of the cell adhesion molecules L1, N-CAM and J1 in the mouse intestine. EMBO J. 1987 Sep;6(9):2581–2586. doi: 10.1002/j.1460-2075.1987.tb02548.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Traunecker A., Lanzavecchia A., Karjalainen K. Bispecific single chain molecules (Janusins) target cytotoxic lymphocytes on HIV infected cells. EMBO J. 1991 Dec;10(12):3655–3659. doi: 10.1002/j.1460-2075.1991.tb04932.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Vogelstein B., Kinzler K. W. Has the breast cancer gene been found? Cell. 1994 Oct 7;79(1):1–3. doi: 10.1016/0092-8674(94)90393-x. [DOI] [PubMed] [Google Scholar]
  48. Wang J. H., Pepinsky R. B., Stehle T., Liu J. H., Karpusas M., Browning B., Osborn L. The crystal structure of an N-terminal two-domain fragment of vascular cell adhesion molecule 1 (VCAM-1): a cyclic peptide based on the domain 1 C-D loop can inhibit VCAM-1-alpha 4 integrin interaction. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5714–5718. doi: 10.1073/pnas.92.12.5714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wayner E. A., Orlando R. A., Cheresh D. A. Integrins alpha v beta 3 and alpha v beta 5 contribute to cell attachment to vitronectin but differentially distribute on the cell surface. J Cell Biol. 1991 May;113(4):919–929. doi: 10.1083/jcb.113.4.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Williams A. F., Barclay A. N. The immunoglobulin superfamily--domains for cell surface recognition. Annu Rev Immunol. 1988;6:381–405. doi: 10.1146/annurev.iy.06.040188.002121. [DOI] [PubMed] [Google Scholar]
  51. Wolff J. M., Frank R., Mujoo K., Spiro R. C., Reisfeld R. A., Rathjen F. G. A human brain glycoprotein related to the mouse cell adhesion molecule L1. J Biol Chem. 1988 Aug 25;263(24):11943–11947. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES