Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Mar 1;132(5):915–923. doi: 10.1083/jcb.132.5.915

A cell cycle-associated change in Ca2+ releasing activity leads to the generation of Ca2+ transients in mouse embryos during the first mitotic division

PMCID: PMC2120737  PMID: 8603922

Abstract

We have used Ca2+-sensitive fluorescent dyes to monitor intracellular Ca2+ during mitosis in one-cell mouse embryos. We find that fertilized embryos generate Ca2+ transients at nuclear envelope breakdown (NEBD) and during mitosis. In addition, fertilized embryos arrested in metaphase using colcemid continue to generate Ca2+ transients. In contrast, parthenogenetic embryos produced by a 2-h exposure to strontium containing medium do not generate detectable Ca2+ transients at NEBD or in mitosis. However, when parthenogenetic embryos are cultured continuously in strontium containing medium Ca2+ transients are detected in mitosis but not in interphase. This suggests that mitotic Ca2+ transients are detected in the presence of an appropriate stimulus such as fertilization or strontium. The Ca2+ transient detected in fertilized embryos is not necessary for inducing NEBD since parthenogenetic embryos undergo nuclear envelope breakdown (NEBD). Also the first sign that NEBD is imminent occurs several minutes before the Ca2+ transient. The Ca2+ transient at NEBD appears to be associated with the nucleus since nuclear transfer experiments show that the presence of a karyoplast from a fertilized embryo is essential. Finally, we show that the intracellular Ca2+ chelator Bapta inhibits NEBD in fertilized and parthenogenetic embryos in a dose-dependent manner. These studies show that during mitosis there is an endogenous increase in Ca2+ releasing activity that leads to the generation of Ca2+ transients specifically during mitosis. The ability of Ca2+ buffers to inhibit NEBD regardless of the presence of global Ca2+ transients suggests that the underlying cell cycle-associated Ca2+ releasing activity may take the form of localized Ca2+ transients.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bos-Mikich A., Swann K., Whittingham D. G. Calcium oscillations and protein synthesis inhibition synergistically activate mouse oocytes. Mol Reprod Dev. 1995 May;41(1):84–90. doi: 10.1002/mrd.1080410113. [DOI] [PubMed] [Google Scholar]
  2. Carroll J., Swann K. Spontaneous cytosolic calcium oscillations driven by inositol trisphosphate occur during in vitro maturation of mouse oocytes. J Biol Chem. 1992 Jun 5;267(16):11196–11201. [PubMed] [Google Scholar]
  3. Carroll J., Swann K., Whittingham D., Whitaker M. Spatiotemporal dynamics of intracellular [Ca2+]i oscillations during the growth and meiotic maturation of mouse oocytes. Development. 1994 Dec;120(12):3507–3517. doi: 10.1242/dev.120.12.3507. [DOI] [PubMed] [Google Scholar]
  4. Cheng H., Lederer W. J., Cannell M. B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science. 1993 Oct 29;262(5134):740–744. doi: 10.1126/science.8235594. [DOI] [PubMed] [Google Scholar]
  5. Ciapa B., Pesando D., Wilding M., Whitaker M. Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels. Nature. 1994 Apr 28;368(6474):875–878. doi: 10.1038/368875a0. [DOI] [PubMed] [Google Scholar]
  6. Day M. L., Pickering S. J., Johnson M. H., Cook D. I. Cell-cycle control of a large-conductance K+ channel in mouse early embryos. Nature. 1993 Oct 7;365(6446):560–562. doi: 10.1038/365560a0. [DOI] [PubMed] [Google Scholar]
  7. Fulton B. P., Whittingham D. G. Activation of mammalian oocytes by intracellular injection of calcium. Nature. 1978 May 11;273(5658):149–151. doi: 10.1038/273149a0. [DOI] [PubMed] [Google Scholar]
  8. Gerasimenko O. V., Gerasimenko J. V., Tepikin A. V., Petersen O. H. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell. 1995 Feb 10;80(3):439–444. doi: 10.1016/0092-8674(95)90494-8. [DOI] [PubMed] [Google Scholar]
  9. Grandin N., Charbonneau M. Intracellular free calcium oscillates during cell division of Xenopus embryos. J Cell Biol. 1991 Feb;112(4):711–718. doi: 10.1083/jcb.112.4.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  11. Hepler P. K. Calcium transients during mitosis: observations in flux. J Cell Biol. 1989 Dec;109(6 Pt 1):2567–2573. doi: 10.1083/jcb.109.6.2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hepler P. K., Sek F. J., John P. C. Nuclear concentration and mitotic dispersion of the essential cell cycle protein, p13suc1, examined in living cells. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2176–2180. doi: 10.1073/pnas.91.6.2176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Igusa Y., Miyazaki S. Effects of altered extracellular and intracellular calcium concentration on hyperpolarizing responses of the hamster egg. J Physiol. 1983 Jul;340:611–632. doi: 10.1113/jphysiol.1983.sp014783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jones K. T., Carroll J., Merriman J. A., Whittingham D. G., Kono T. Repetitive sperm-induced Ca2+ transients in mouse oocytes are cell cycle dependent. Development. 1995 Oct;121(10):3259–3266. doi: 10.1242/dev.121.10.3259. [DOI] [PubMed] [Google Scholar]
  15. Jones K. T., Carroll J., Whittingham D. G. Ionomycin, thapsigargin, ryanodine, and sperm induced Ca2+ release increase during meiotic maturation of mouse oocytes. J Biol Chem. 1995 Mar 24;270(12):6671–6677. doi: 10.1074/jbc.270.12.6671. [DOI] [PubMed] [Google Scholar]
  16. Kao J. P., Alderton J. M., Tsien R. Y., Steinhardt R. A. Active involvement of Ca2+ in mitotic progression of Swiss 3T3 fibroblasts. J Cell Biol. 1990 Jul;111(1):183–196. doi: 10.1083/jcb.111.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Keating T. J., Cork R. J., Robinson K. R. Intracellular free calcium oscillations in normal and cleavage-blocked embryos and artificially activated eggs of Xenopus laevis. J Cell Sci. 1994 Aug;107(Pt 8):2229–2237. doi: 10.1242/jcs.107.8.2229. [DOI] [PubMed] [Google Scholar]
  18. Kline D., Kline J. T. Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev Biol. 1992 Jan;149(1):80–89. doi: 10.1016/0012-1606(92)90265-i. [DOI] [PubMed] [Google Scholar]
  19. Kono T., Carroll J., Swann K., Whittingham D. G. Nuclei from fertilized mouse embryos have calcium-releasing activity. Development. 1995 Apr;121(4):1123–1128. doi: 10.1242/dev.121.4.1123. [DOI] [PubMed] [Google Scholar]
  20. Kono T., Kwon O. Y., Nakahara T. Development of enucleated mouse oocytes reconstituted with embryonic nuclei. J Reprod Fertil. 1991 Sep;93(1):165–172. doi: 10.1530/jrf.0.0930165. [DOI] [PubMed] [Google Scholar]
  21. Kono T., Sotomaru Y., Sato Y., Nakahara T. Development of androgenetic mouse embryos produced by in vitro fertilization of enucleated oocytes. Mol Reprod Dev. 1993 Jan;34(1):43–46. doi: 10.1002/mrd.1080340107. [DOI] [PubMed] [Google Scholar]
  22. Kubota H. Y., Yoshimoto Y., Hiramoto Y. Oscillation of intracellular free calcium in cleaving and cleavage-arrested embryos of Xenopus laevis. Dev Biol. 1993 Dec;160(2):512–518. doi: 10.1006/dbio.1993.1325. [DOI] [PubMed] [Google Scholar]
  23. Millar J. B., Blevitt J., Gerace L., Sadhu K., Featherstone C., Russell P. p55CDC25 is a nuclear protein required for the initiation of mitosis in human cells. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10500–10504. doi: 10.1073/pnas.88.23.10500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murray A. W., Kirschner M. W. Cyclin synthesis drives the early embryonic cell cycle. Nature. 1989 May 25;339(6222):275–280. doi: 10.1038/339275a0. [DOI] [PubMed] [Google Scholar]
  25. Nakade S., Rhee S. K., Hamanaka H., Mikoshiba K. Cyclic AMP-dependent phosphorylation of an immunoaffinity-purified homotetrameric inositol 1,4,5-trisphosphate receptor (type I) increases Ca2+ flux in reconstituted lipid vesicles. J Biol Chem. 1994 Mar 4;269(9):6735–6742. [PubMed] [Google Scholar]
  26. Ookata K., Hisanaga S., Okano T., Tachibana K., Kishimoto T. Relocation and distinct subcellular localization of p34cdc2-cyclin B complex at meiosis reinitiation in starfish oocytes. EMBO J. 1992 May;11(5):1763–1772. doi: 10.1002/j.1460-2075.1992.tb05228.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Poenie M., Alderton J., Tsien R. Y., Steinhardt R. A. Changes of free calcium levels with stages of the cell division cycle. Nature. 1985 May 9;315(6015):147–149. doi: 10.1038/315147a0. [DOI] [PubMed] [Google Scholar]
  28. Snow P., Nuccitelli R. Calcium buffer injections delay cleavage in Xenopus laevis blastomeres. J Cell Biol. 1993 Jul;122(2):387–394. doi: 10.1083/jcb.122.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stachecki J. J., Yelian F. D., Leach R. E., Armant D. R. Mouse blastocyst outgrowth and implantation rates following exposure to ethanol or A23187 during culture in vitro. J Reprod Fertil. 1994 Aug;101(3):611–617. doi: 10.1530/jrf.0.1010611. [DOI] [PubMed] [Google Scholar]
  30. Stachecki J. J., Yelian F. D., Schultz J. F., Leach R. E., Armant D. R. Blastocyst cavitation is accelerated by ethanol- or ionophore-induced elevation of intracellular calcium. Biol Reprod. 1994 Jan;50(1):1–9. doi: 10.1095/biolreprod50.1.1. [DOI] [PubMed] [Google Scholar]
  31. Steinhardt R. A., Alderton J. Intracellular free calcium rise triggers nuclear envelope breakdown in the sea urchin embryo. Nature. 1988 Mar 24;332(6162):364–366. doi: 10.1038/332364a0. [DOI] [PubMed] [Google Scholar]
  32. Stith B. J., Goalstone M., Silva S., Jaynes C. Inositol 1,4,5-trisphosphate mass changes from fertilization through first cleavage in Xenopus laevis. Mol Biol Cell. 1993 Apr;4(4):435–443. doi: 10.1091/mbc.4.4.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Swann K. A cytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster eggs. Development. 1990 Dec;110(4):1295–1302. doi: 10.1242/dev.110.4.1295. [DOI] [PubMed] [Google Scholar]
  34. Tombes R. M., Borisy G. G. Intracellular free calcium and mitosis in mammalian cells: anaphase onset is calcium modulated, but is not triggered by a brief transient. J Cell Biol. 1989 Aug;109(2):627–636. doi: 10.1083/jcb.109.2.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tombes R. M., Simerly C., Borisy G. G., Schatten G. Meiosis, egg activation, and nuclear envelope breakdown are differentially reliant on Ca2+, whereas germinal vesicle breakdown is Ca2+ independent in the mouse oocyte. J Cell Biol. 1992 May;117(4):799–811. doi: 10.1083/jcb.117.4.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Twigg J., Patel R., Whitaker M. Translational control of InsP3-induced chromatin condensation during the early cell cycles of sea urchin embryos. Nature. 1988 Mar 24;332(6162):366–369. doi: 10.1038/332366a0. [DOI] [PubMed] [Google Scholar]
  37. Vitullo A. D., Ozil J. P. Repetitive calcium stimuli drive meiotic resumption and pronuclear development during mouse oocyte activation. Dev Biol. 1992 May;151(1):128–136. doi: 10.1016/0012-1606(92)90220-b. [DOI] [PubMed] [Google Scholar]
  38. Whitaker M., Patel R. Calcium and cell cycle control. Development. 1990 Apr;108(4):525–542. doi: 10.1242/dev.108.4.525. [DOI] [PubMed] [Google Scholar]
  39. Whittingham D. G. Culture of mouse ova. J Reprod Fertil Suppl. 1971 Jun;14:7–21. [PubMed] [Google Scholar]
  40. Yao Y., Parker I. Ca2+ influx modulation of temporal and spatial patterns of inositol trisphosphate-mediated Ca2+ liberation in Xenopus oocytes. J Physiol. 1994 Apr 1;476(1):17–28. [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES