Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Mar 1;132(5):969–983. doi: 10.1083/jcb.132.5.969

Contractile activity regulates isoform expression and polysialylation of NCAM in cultured myotubes: involvement of Ca2+ and protein kinase C

PMCID: PMC2120742  PMID: 8603927

Abstract

Muscle development involves a series of complex cell-cell interactions that are mediated, at least in part, by several different cell adhesion molecules. Previous work from this lab showed that the different isoforms of NCAM and its level of polysialylation are developmentally regulated during chick myogenesis in vivo and that this regulation is important for normal muscle development. Using developing chick secondary myotubes grown in culture, we show here that both the polysialylation of NCAM and the developmental switch in isoform expression are regulated by activity and that Ca2+ entry through voltage-gated channels and the subsequent activation of protein kinase C are required for the developmental changes in NCAM isoform synthesis. Specifically, PSA expression was shown to be developmentally regulated with high expression being temporally correlated with the onset of spontaneous contractile activity. Furthermore, blocking contractile activity caused a decrease in PSA expression, while increasing activity with electrical stimulation resulted in its up-regulation. Immunoblot and metabolic labeling studies indicated that dividing myoblasts synthesize primarily 145-kD NCAM, newly formed, spontaneously contracting myotubes synthesize 130-, 145-, and 155-kD NCAM isoforms, while older, more mature myotubes primarily synthesize the glycosylphosphatidylinositol-anchored 130-kD isoform which, in contrast to the other three isoforms, had a high rate of turnover. This developmental switch in NCAM isoform expression could be inhibited with Ca2+ channel blockers and inhibitors of protein kinase C. Taken together, these results suggest that Ca2+ ions and protein kinase C are involved in a second messenger cascade coupling membrane depolarization with transcriptional factors that regulate NCAM isoform synthesis and polysialylation.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acheson A., Sunshine J. L., Rutishauser U. NCAM polysialic acid can regulate both cell-cell and cell-substrate interactions. J Cell Biol. 1991 Jul;114(1):143–153. doi: 10.1083/jcb.114.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arevalo J. I., Saz H. J. Effects of cholinergic agents on the metabolism of choline in muscle from Ascaris suum. J Parasitol. 1992 Jun;78(3):387–392. [PubMed] [Google Scholar]
  3. Asaoka Y., Nakamura S., Yoshida K., Nishizuka Y. Protein kinase C, calcium and phospholipid degradation. Trends Biochem Sci. 1992 Oct;17(10):414–417. doi: 10.1016/0968-0004(92)90011-w. [DOI] [PubMed] [Google Scholar]
  4. Bartsch U., Kirchhoff F., Schachner M. Highly sialylated N-CAM is expressed in adult mouse optic nerve and retina. J Neurocytol. 1990 Aug;19(4):550–565. doi: 10.1007/BF01257243. [DOI] [PubMed] [Google Scholar]
  5. Bekoff A., Stein P. S., Hamburger V. Coordinated motor output in the hindlimb of the 7-day chick embryo. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1245–1248. doi: 10.1073/pnas.72.4.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berg D. K., Kelly R. B., Sargent P. B., Williamson P., Hall Z. W. Binding of -bungarotoxin to acetylcholine receptors in mammalian muscle (snake venom-denervated muscle-neonatal muscle-rat diaphragm-SDS-polyacrylamide gel electrophoresis). Proc Natl Acad Sci U S A. 1972 Jan;69(1):147–151. doi: 10.1073/pnas.69.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Betz H., Changeux J. P. Regulation of muscle acetylcholine receptor synthesis in vitro by cyclic nucleotide derivatives. Nature. 1979 Apr 19;278(5706):749–752. doi: 10.1038/278749a0. [DOI] [PubMed] [Google Scholar]
  8. Booth C. M., Kemplay S. K., Brown M. C. An antibody to neural cell adhesion molecule impairs motor nerve terminal sprouting in a mouse muscle locally paralysed with botulinum toxin. Neuroscience. 1990;35(1):85–91. doi: 10.1016/0306-4522(90)90123-l. [DOI] [PubMed] [Google Scholar]
  9. Breen K. C., Kelly P. G., Regan C. M. Postnatal D2-CAM/N-CAM sialylation state is controlled by a developmentally regulated Golgi sialyltransferase. J Neurochem. 1987 May;48(5):1486–1493. doi: 10.1111/j.1471-4159.1987.tb05690.x. [DOI] [PubMed] [Google Scholar]
  10. Breen K. C., Regan C. M. Differentiation-dependent sialylation of individual neural cell adhesion molecule polypeptides during postnatal development. J Neurochem. 1988 Mar;50(3):712–716. doi: 10.1111/j.1471-4159.1988.tb02972.x. [DOI] [PubMed] [Google Scholar]
  11. Brusés J. L., Oka S., Rutishauser U. NCAM-associated polysialic acid on ciliary ganglion neurons is regulated by polysialytransferase levels and interaction with muscle. J Neurosci. 1995 Dec;15(12):8310–8319. doi: 10.1523/JNEUROSCI.15-12-08310.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Byeon M. K., Sugi Y., Markwald R. R., Hoffman S. NCAM polypeptides in heart development: association with Z discs of forms that contain the muscle-specific domain. J Cell Biol. 1995 Jan;128(1-2):209–221. doi: 10.1083/jcb.128.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cerny L. C., Bandman E. Contractile activity is required for the expression of neonatal myosin heavy chain in embryonic chick pectoral muscle cultures. J Cell Biol. 1986 Dec;103(6 Pt 1):2153–2161. doi: 10.1083/jcb.103.6.2153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Changeux J. P., Babinet C., Bessereau J. L., Bessis A., Cartaud A., Cartaud J., Daubas P., Devillers-Thiéry A., Duclert A., Hill J. A. Compartmentalization of acetylcholine receptor gene expression during development of the neuromuscular junction. Cold Spring Harb Symp Quant Biol. 1990;55:381–396. doi: 10.1101/sqb.1990.055.01.039. [DOI] [PubMed] [Google Scholar]
  15. Corriveau R. A., Romano S. J., Conroy W. G., Oliva L., Berg D. K. Expression of neuronal acetylcholine receptor genes in vertebrate skeletal muscle during development. J Neurosci. 1995 Feb;15(2):1372–1383. doi: 10.1523/JNEUROSCI.15-02-01372.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Covault J., Liu Q. Y., el-Deeb S. Calcium-activated proteolysis of intracellular domains in the cell adhesion molecules NCAM and N-cadherin. Brain Res Mol Brain Res. 1991 Aug;11(1):11–16. doi: 10.1016/0169-328x(91)90015-p. [DOI] [PubMed] [Google Scholar]
  17. Covault J., Merlie J. P., Goridis C., Sanes J. R. Molecular forms of N-CAM and its RNA in developing and denervated skeletal muscle. J Cell Biol. 1986 Mar;102(3):731–739. doi: 10.1083/jcb.102.3.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Covault J., Sanes J. R. Distribution of N-CAM in synaptic and extrasynaptic portions of developing and adult skeletal muscle. J Cell Biol. 1986 Mar;102(3):716–730. doi: 10.1083/jcb.102.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Covault J., Sanes J. R. Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4544–4548. doi: 10.1073/pnas.82.13.4544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Cremer H., Lange R., Christoph A., Plomann M., Vopper G., Roes J., Brown R., Baldwin S., Kraemer P., Scheff S. Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature. 1994 Feb 3;367(6462):455–459. doi: 10.1038/367455a0. [DOI] [PubMed] [Google Scholar]
  21. Cunningham B. A., Hemperly J. J., Murray B. A., Prediger E. A., Brackenbury R., Edelman G. M. Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science. 1987 May 15;236(4803):799–806. doi: 10.1126/science.3576199. [DOI] [PubMed] [Google Scholar]
  22. Dickson G., Peck D., Moore S. E., Barton C. H., Walsh F. S. Enhanced myogenesis in NCAM-transfected mouse myoblasts. Nature. 1990 Mar 22;344(6264):348–351. doi: 10.1038/344348a0. [DOI] [PubMed] [Google Scholar]
  23. Dodd J., Morton S. B., Karagogeos D., Yamamoto M., Jessell T. M. Spatial regulation of axonal glycoprotein expression on subsets of embryonic spinal neurons. Neuron. 1988 Apr;1(2):105–116. doi: 10.1016/0896-6273(88)90194-8. [DOI] [PubMed] [Google Scholar]
  24. Doherty P., Walsh F. S. Cell adhesion molecules, second messengers and axonal growth. Curr Opin Neurobiol. 1992 Oct;2(5):595–601. doi: 10.1016/0959-4388(92)90024-f. [DOI] [PubMed] [Google Scholar]
  25. Fontaine B., Klarsfeld A., Changeux J. P. Calcitonin gene-related peptide and muscle activity regulate acetylcholine receptor alpha-subunit mRNA levels by distinct intracellular pathways. J Cell Biol. 1987 Sep;105(3):1337–1342. doi: 10.1083/jcb.105.3.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Fredette B. J., Landmesser L. T. A reevaluation of the role of innervation in primary and secondary myogenesis in developing chick muscle. Dev Biol. 1991 Jan;143(1):19–35. doi: 10.1016/0012-1606(91)90051-4. [DOI] [PubMed] [Google Scholar]
  27. Fredette B., Rutishauser U., Landmesser L. Regulation and activity-dependence of N-cadherin, NCAM isoforms, and polysialic acid on chick myotubes during development. J Cell Biol. 1993 Dec;123(6 Pt 2):1867–1888. doi: 10.1083/jcb.123.6.1867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Frelinger A. L., 3rd, Rutishauser U. Topography of N-CAM structural and functional determinants. II. Placement of monoclonal antibody epitopes. J Cell Biol. 1986 Nov;103(5):1729–1737. doi: 10.1083/jcb.103.5.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Goldman D., Brenner H. R., Heinemann S. Acetylcholine receptor alpha-, beta-, gamma-, and delta-subunit mRNA levels are regulated by muscle activity. Neuron. 1988 Jun;1(4):329–333. doi: 10.1016/0896-6273(88)90081-5. [DOI] [PubMed] [Google Scholar]
  30. Hahn C. G., Covault J. Neural regulation of N-cadherin gene expression in developing and adult skeletal muscle. J Neurosci. 1992 Dec;12(12):4677–4687. doi: 10.1523/JNEUROSCI.12-12-04677.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Harris A. J. Embryonic growth and innervation of rat skeletal muscles. I. Neural regulation of muscle fibre numbers. Philos Trans R Soc Lond B Biol Sci. 1981 Jul 16;293(1065):257–277. doi: 10.1098/rstb.1981.0076. [DOI] [PubMed] [Google Scholar]
  32. Hoffman S., Crossin K. L., Prediger E. A., Cunningham B. A., Edelman G. M. Expression and function of cell adhesion molecules during the early development of the heart. Ann N Y Acad Sci. 1990;588:73–86. doi: 10.1111/j.1749-6632.1990.tb13198.x. [DOI] [PubMed] [Google Scholar]
  33. Huang C. F., Flucher B. E., Schmidt M. M., Stroud S. K., Schmidt J. Depolarization-transcription signals in skeletal muscle use calcium flux through L channels, but bypass the sarcoplasmic reticulum. Neuron. 1994 Jul;13(1):167–177. doi: 10.1016/0896-6273(94)90467-7. [DOI] [PubMed] [Google Scholar]
  34. Huang C. F., Tong J., Schmidt J. Protein kinase C couples membrane excitation to acetylcholine receptor gene inactivation in chick skeletal muscle. Neuron. 1992 Oct;9(4):671–678. doi: 10.1016/0896-6273(92)90030-h. [DOI] [PubMed] [Google Scholar]
  35. Klarsfeld A., Laufer R., Fontaine B., Devillers-Thiéry A., Dubreuil C., Changeux J. P. Regulation of muscle AChR alpha subunit gene expression by electrical activity: involvement of protein kinase C and Ca2+. Neuron. 1989 Mar;2(3):1229–1236. doi: 10.1016/0896-6273(89)90307-3. [DOI] [PubMed] [Google Scholar]
  36. Knudsen K. A. Cell adhesion molecules in myogenesis. Curr Opin Cell Biol. 1990 Oct;2(5):902–906. doi: 10.1016/0955-0674(90)90090-2. [DOI] [PubMed] [Google Scholar]
  37. Knudsen K. A., McElwee S. A., Myers L. A role for the neural cell adhesion molecule, NCAM, in myoblast interaction during myogenesis. Dev Biol. 1990 Mar;138(1):159–168. doi: 10.1016/0012-1606(90)90185-l. [DOI] [PubMed] [Google Scholar]
  38. Knudsen K. A., Smith L., McElwee S. Involvement of cell surface phosphatidylinositol-anchored glycoproteins in cell-cell adhesion of chick embryo myoblasts. J Cell Biol. 1989 Oct;109(4 Pt 1):1779–1786. doi: 10.1083/jcb.109.4.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  40. Landmesser L., Dahm L., Schultz K., Rutishauser U. Distinct roles for adhesion molecules during innervation of embryonic chick muscle. Dev Biol. 1988 Dec;130(2):645–670. doi: 10.1016/0012-1606(88)90358-2. [DOI] [PubMed] [Google Scholar]
  41. Langenfeld-Oster B., Faissner A., Irintchev A., Wernig A. Polyclonal antibodies against NCAM and tenascin delay endplate reinnervation. J Neurocytol. 1994 Oct;23(10):591–604. doi: 10.1007/BF01191554. [DOI] [PubMed] [Google Scholar]
  42. Lomo T., Westgaard R. H. Further studies on the control of ACh sensitivity by muscle activity in the rat. J Physiol. 1975 Nov;252(3):603–626. doi: 10.1113/jphysiol.1975.sp011161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Lyles J. M., Amin W., Bock E., Weill C. L. Regulation of NCAM by growth factors in serum-free myotube cultures. J Neurosci Res. 1993 Feb 15;34(3):273–286. doi: 10.1002/jnr.490340304. [DOI] [PubMed] [Google Scholar]
  44. Lyons G. E., Moore R., Yahara O., Buckingham M. E., Walsh F. S. Expression of NCAM isoforms during skeletal myogenesis in the mouse embryo. Dev Dyn. 1992 Jun;194(2):94–104. doi: 10.1002/aja.1001940203. [DOI] [PubMed] [Google Scholar]
  45. Mege R. M., Goudou D., Diaz C., Nicolet M., Garcia L., Geraud G., Rieger F. N-cadherin and N-CAM in myoblast fusion: compared localisation and effect of blockade by peptides and antibodies. J Cell Sci. 1992 Dec;103(Pt 4):897–906. doi: 10.1242/jcs.103.4.897. [DOI] [PubMed] [Google Scholar]
  46. Mendelzon D., Changeux J. P., Nghiêm H. O. Phosphorylation of myogenin in chick myotubes: regulation by electrical activity and by protein kinase C. Implications for acetylcholine receptor gene expression. Biochemistry. 1994 Mar 8;33(9):2568–2575. doi: 10.1021/bi00175a028. [DOI] [PubMed] [Google Scholar]
  47. Miledi R., Potter L. T. Acetylcholine receptors in muscle fibres. Nature. 1971 Oct 29;233(5322):599–603. doi: 10.1038/233599a0. [DOI] [PubMed] [Google Scholar]
  48. Moore S. E., Walsh F. S. Nerve dependent regulation of neural cell adhesion molecule expression in skeletal muscle. Neuroscience. 1986 Jun;18(2):499–505. doi: 10.1016/0306-4522(86)90170-3. [DOI] [PubMed] [Google Scholar]
  49. Müller-Decker K. Interruption of TPA-induced signals by an antiviral and antitumoral xanthate compound: inhibition of a phospholipase C-type reaction. Biochem Biophys Res Commun. 1989 Jul 14;162(1):198–205. doi: 10.1016/0006-291x(89)91981-5. [DOI] [PubMed] [Google Scholar]
  50. O'Donovan M. J., Landmesser L. The development of hindlimb motor activity studied in the isolated spinal cord of the chick embryo. J Neurosci. 1987 Oct;7(10):3256–3264. doi: 10.1523/JNEUROSCI.07-10-03256.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Ono K., Tomasiewicz H., Magnuson T., Rutishauser U. N-CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron. 1994 Sep;13(3):595–609. doi: 10.1016/0896-6273(94)90028-0. [DOI] [PubMed] [Google Scholar]
  52. Owens G. C., Edelman G. M., Cunningham B. A. Organization of the neural cell adhesion molecule (N-CAM) gene: alternative exon usage as the basis for different membrane-associated domains. Proc Natl Acad Sci U S A. 1987 Jan;84(1):294–298. doi: 10.1073/pnas.84.1.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Peck D., Walsh F. S. Differential effects of over-expressed neural cell adhesion molecule isoforms on myoblast fusion. J Cell Biol. 1993 Dec;123(6 Pt 1):1587–1595. doi: 10.1083/jcb.123.6.1587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Pette D., Vrbová G. Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharmacol. 1992;120:115–202. doi: 10.1007/BFb0036123. [DOI] [PubMed] [Google Scholar]
  55. Richter E. A., Cleland P. J., Rattigan S., Clark M. G. Contraction-associated translocation of protein kinase C in rat skeletal muscle. FEBS Lett. 1987 Jun 15;217(2):232–236. doi: 10.1016/0014-5793(87)80669-5. [DOI] [PubMed] [Google Scholar]
  56. Ross J. J., Duxson M. J., Harris A. J. Formation of primary and secondary myotubes in rat lumbrical muscles. Development. 1987 Jul;100(3):383–394. doi: 10.1242/dev.100.3.383. [DOI] [PubMed] [Google Scholar]
  57. Shainberg A., Cohen S. A., Nelson P. G. Induction of acetylcholine receptors in muscle cultures. Pflugers Arch. 1976 Feb 24;361(3):255–261. doi: 10.1007/BF00587290. [DOI] [PubMed] [Google Scholar]
  58. Sheppard A., Wu J., Rutishauser U., Lynch G. Proteolytic modification of neural cell adhesion molecule (NCAM) by the intracellular proteinase calpain. Biochim Biophys Acta. 1991 Jan 8;1076(1):156–160. doi: 10.1016/0167-4838(91)90234-q. [DOI] [PubMed] [Google Scholar]
  59. Stallcup W. B. Comparative pharmacology of voltage-dependent sodium channels. Brain Res. 1977 Oct 21;135(1):37–53. doi: 10.1016/0006-8993(77)91050-2. [DOI] [PubMed] [Google Scholar]
  60. Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
  61. Tang J., Landmesser L. Reduction of intramuscular nerve branching and synaptogenesis is correlated with decreased motoneuron survival. J Neurosci. 1993 Jul;13(7):3095–3103. doi: 10.1523/JNEUROSCI.13-07-03095.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Tosney K. W., Watanabe M., Landmesser L., Rutishauser U. The distribution of NCAM in the chick hindlimb during axon outgrowth and synaptogenesis. Dev Biol. 1986 Apr;114(2):437–452. doi: 10.1016/0012-1606(86)90208-3. [DOI] [PubMed] [Google Scholar]
  64. Walsh K. B., Bryant S. H., Schwartz A. Effect of calcium antagonist drugs on calcium currents in mammalian skeletal muscle fibers. J Pharmacol Exp Ther. 1986 Feb;236(2):403–407. [PubMed] [Google Scholar]
  65. Watanabe M., Frelinger A. L., 3rd, Rutishauser U. Topography of N-CAM structural and functional determinants. I. Classification of monoclonal antibody epitopes. J Cell Biol. 1986 Nov;103(5):1721–1727. doi: 10.1083/jcb.103.5.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Yoshimi T., Mimura N., Aimoto S., Asano A. Transitional expression of neural cell adhesion molecule isoforms during chicken embryonic myogenesis. Cell Struct Funct. 1993 Feb;18(1):1–11. doi: 10.1247/csf.18.1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES