Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Mar 2;132(6):1189–1198. doi: 10.1083/jcb.132.6.1189

Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment

PMCID: PMC2120759  PMID: 8601594

Abstract

Stable attachment of external epithelia to the basement membrane and underlying stroma is mediated by transmembrane proteins such as the integrin alpha6beta4 and bullous pemphigoid antigen 2 within the hemidesmosomes along the basolateral surface of the epithelial cell and their ligands that include a specialized subfamily of laminins. The laminin 5 molecule (previously termed kalinin/nicein/epiligrin) is a member of this epithelial-specific subfamily. Laminin 5 chains are not only considerably truncated within domains III-VI, but are also extensively proteolytically processed in vitro and in vivo. As a result, the domains expected to be required for the association of laminins with other basement membrane components are lacking in the mature laminin 5 molecule. Therefore, the tight binding of laminin 5 to the basement membrane may occur by a unique mechanism. To examine laminin 5 in tissue, we chose human amnion as the source, because of its availability and the similarity of the amniotic epithelial basement membrane with that of skin. We isolated the laminin 5 contained within the basement membrane of human amnion. In addition to monomeric laminin 5, we find that much of the laminin 5 isolated is covalently adducted with laminin 6 (alpha3beta1gamma1) and a novel laminin isotype we have termed laminin 7 (alpha3beta2gamma1). We propose that the association between laminin 5 and laminins 6 and 7 is a mechanism used in amnion to allow stable association of laminin 5 with the basement membrane. The beta2 chain is seen at the human amniotic epithelial-stromal interface and at the dermal-epidermal junction of fetal and adult bovine skin by immunofluorescence, but is not present, or only weakly present, in neonatal human skin.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aberdam D., Galliano M. F., Vailly J., Pulkkinen L., Bonifas J., Christiano A. M., Tryggvason K., Uitto J., Epstein E. H., Jr, Ortonne J. P. Herlitz's junctional epidermolysis bullosa is linked to mutations in the gene (LAMC2) for the gamma 2 subunit of nicein/kalinin (LAMININ-5). Nat Genet. 1994 Mar;6(3):299–304. doi: 10.1038/ng0394-299. [DOI] [PubMed] [Google Scholar]
  2. Aebersold R. H., Leavitt J., Saavedra R. A., Hood L. E., Kent S. B. Internal amino acid sequence analysis of proteins separated by one- or two-dimensional gel electrophoresis after in situ protease digestion on nitrocellulose. Proc Natl Acad Sci U S A. 1987 Oct;84(20):6970–6974. doi: 10.1073/pnas.84.20.6970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown J. C., Wiedemann H., Timpl R. Protein binding and cell adhesion properties of two laminin isoforms (AmB1eB2e, AmB1sB2e) from human placenta. J Cell Sci. 1994 Jan;107(Pt 1):329–338. doi: 10.1242/jcs.107.1.329. [DOI] [PubMed] [Google Scholar]
  4. Bruns R. R. A symmetrical, extracellular fibril. J Cell Biol. 1969 Aug;42(2):418–430. doi: 10.1083/jcb.42.2.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burgeson R. E., Chiquet M., Deutzmann R., Ekblom P., Engel J., Kleinman H., Martin G. R., Meneguzzi G., Paulsson M., Sanes J. A new nomenclature for the laminins. Matrix Biol. 1994 Apr;14(3):209–211. doi: 10.1016/0945-053x(94)90184-8. [DOI] [PubMed] [Google Scholar]
  6. Carter W. G., Ryan M. C., Gahr P. J. Epiligrin, a new cell adhesion ligand for integrin alpha 3 beta 1 in epithelial basement membranes. Cell. 1991 May 17;65(4):599–610. doi: 10.1016/0092-8674(91)90092-d. [DOI] [PubMed] [Google Scholar]
  7. Chan L. S., Fine J. D., Briggaman R. A., Woodley D. T., Hammerberg C., Drugge R. J., Cooper K. D. Identification and partial characterization of a novel 105-kDalton lower lamina lucida autoantigen associated with a novel immune-mediated subepidermal blistering disease. J Invest Dermatol. 1993 Sep;101(3):262–267. doi: 10.1111/1523-1747.ep12365189. [DOI] [PubMed] [Google Scholar]
  8. Engvall E., Earwicker D., Haaparanta T., Ruoslahti E., Sanes J. R. Distribution and isolation of four laminin variants; tissue restricted distribution of heterotrimers assembled from five different subunits. Cell Regul. 1990 Sep;1(10):731–740. doi: 10.1091/mbc.1.10.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Engvall E. Laminin variants: why, where and when? Kidney Int. 1993 Jan;43(1):2–6. doi: 10.1038/ki.1993.2. [DOI] [PubMed] [Google Scholar]
  10. Fine J. D., Horiguchi Y., Jester J., Couchman J. R. Detection and partial characterization of a midlamina lucida-hemidesmosome-associated antigen (19-DEJ-1) present within human skin. J Invest Dermatol. 1989 Jun;92(6):825–830. doi: 10.1111/1523-1747.ep12696839. [DOI] [PubMed] [Google Scholar]
  11. Galliano M. F., Aberdam D., Aguzzi A., Ortonne J. P., Meneguzzi G. Cloning and complete primary structure of the mouse laminin alpha 3 chain. Distinct expression pattern of the laminin alpha 3A and alpha 3B chain isoforms. J Biol Chem. 1995 Sep 15;270(37):21820–21826. doi: 10.1074/jbc.270.37.21820. [DOI] [PubMed] [Google Scholar]
  12. Gerecke D. R., Wagman D. W., Champliaud M. F., Burgeson R. E. The complete primary structure for a novel laminin chain, the laminin B1k chain. J Biol Chem. 1994 Apr 15;269(15):11073–11080. [PubMed] [Google Scholar]
  13. Gipson I. K., Spurr-Michaud S. J., Tisdale A. S. Anchoring fibrils form a complex network in human and rabbit cornea. Invest Ophthalmol Vis Sci. 1987 Feb;28(2):212–220. [PubMed] [Google Scholar]
  14. Graf J., Iwamoto Y., Sasaki M., Martin G. R., Kleinman H. K., Robey F. A., Yamada Y. Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell. 1987 Mar 27;48(6):989–996. doi: 10.1016/0092-8674(87)90707-0. [DOI] [PubMed] [Google Scholar]
  15. Green T. L., Hunter D. D., Chan W., Merlie J. P., Sanes J. R. Synthesis and assembly of the synaptic cleft protein S-laminin by cultured cells. J Biol Chem. 1992 Jan 25;267(3):2014–2022. [PubMed] [Google Scholar]
  16. Hieda Y., Nishizawa Y., Uematsu J., Owaribe K. Identification of a new hemidesmosomal protein, HD1: a major, high molecular mass component of isolated hemidesmosomes. J Cell Biol. 1992 Mar;116(6):1497–1506. doi: 10.1083/jcb.116.6.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hunter D. D., Porter B. E., Bulock J. W., Adams S. P., Merlie J. P., Sanes J. R. Primary sequence of a motor neuron-selective adhesive site in the synaptic basal lamina protein S-laminin. Cell. 1989 Dec 1;59(5):905–913. doi: 10.1016/0092-8674(89)90613-2. [DOI] [PubMed] [Google Scholar]
  18. Hunter D. D., Shah V., Merlie J. P., Sanes J. R. A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature. 1989 Mar 16;338(6212):229–234. doi: 10.1038/338229a0. [DOI] [PubMed] [Google Scholar]
  19. Iivanainen A., Sainio K., Sariola H., Tryggvason K. Primary structure and expression of a novel human laminin alpha 4 chain. FEBS Lett. 1995 May 29;365(2-3):183–188. doi: 10.1016/0014-5793(95)00462-i. [DOI] [PubMed] [Google Scholar]
  20. Kallunki P., Sainio K., Eddy R., Byers M., Kallunki T., Sariola H., Beck K., Hirvonen H., Shows T. B., Tryggvason K. A truncated laminin chain homologous to the B2 chain: structure, spatial expression, and chromosomal assignment. J Cell Biol. 1992 Nov;119(3):679–693. doi: 10.1083/jcb.119.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Keene D. R., Sakai L. Y., Lunstrum G. P., Morris N. P., Burgeson R. E. Type VII collagen forms an extended network of anchoring fibrils. J Cell Biol. 1987 Mar;104(3):611–621. doi: 10.1083/jcb.104.3.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kelly D. E. Fine structure of desmosomes. , hemidesmosomes, and an adepidermal globular layer in developing newt epidermis. J Cell Biol. 1966 Jan;28(1):51–72. doi: 10.1083/jcb.28.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kleinman H. K., Graf J., Iwamoto Y., Sasaki M., Schasteen C. S., Yamada Y., Martin G. R., Robey F. A. Identification of a second active site in laminin for promotion of cell adhesion and migration and inhibition of in vivo melanoma lung colonization. Arch Biochem Biophys. 1989 Jul;272(1):39–45. doi: 10.1016/0003-9861(89)90192-6. [DOI] [PubMed] [Google Scholar]
  24. Komura J. Some ultrastructural observations on the dermo-epidermal junction. Effect of electron stains (phosphotungstic acid, lanthanum) and in vitro trypsin digestion. Acta Derm Venereol Suppl (Stockh) 1973;73:111–119. [PubMed] [Google Scholar]
  25. Labib R. S., Anhalt G. J., Patel H. P., Mutasim D. F., Diaz L. A. Molecular heterogeneity of the bullous pemphigoid antigens as detected by immunoblotting. J Immunol. 1986 Feb 15;136(4):1231–1235. [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Li K. H., Sawamura D., Giudice G. J., Diaz L. A., Mattei M. G., Chu M. L., Uitto J. Genomic organization of collagenous domains and chromosomal assignment of human 180-kDa bullous pemphigoid antigen-2, a novel collagen of stratified squamous epithelium. J Biol Chem. 1991 Dec 15;266(35):24064–24069. [PubMed] [Google Scholar]
  28. Lunstrum G. P., Kuo H. J., Rosenbaum L. M., Keene D. R., Glanville R. W., Sakai L. Y., Burgeson R. E. Anchoring fibrils contain the carboxyl-terminal globular domain of type VII procollagen, but lack the amino-terminal globular domain. J Biol Chem. 1987 Oct 5;262(28):13706–13712. [PubMed] [Google Scholar]
  29. Lunstrum G. P., Sakai L. Y., Keene D. R., Morris N. P., Burgeson R. E. Large complex globular domains of type VII procollagen contribute to the structure of anchoring fibrils. J Biol Chem. 1986 Jul 5;261(19):9042–9048. [PubMed] [Google Scholar]
  30. Marinkovich M. P., Lunstrum G. P., Burgeson R. E. The anchoring filament protein kalinin is synthesized and secreted as a high molecular weight precursor. J Biol Chem. 1992 Sep 5;267(25):17900–17906. [PubMed] [Google Scholar]
  31. Marinkovich M. P., Lunstrum G. P., Keene D. R., Burgeson R. E. The dermal-epidermal junction of human skin contains a novel laminin variant. J Cell Biol. 1992 Nov;119(3):695–703. doi: 10.1083/jcb.119.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mayer U., Pöschl E., Gerecke D. R., Wagman D. W., Burgeson R. E., Timpl R. Low nidogen affinity of laminin-5 can be attributed to two serine residues in EGF-like motif gamma 2III4. FEBS Lett. 1995 May 29;365(2-3):129–132. doi: 10.1016/0014-5793(95)00438-f. [DOI] [PubMed] [Google Scholar]
  33. Morris N. P., Keene D. R., Glanville R. W., Bentz H., Burgeson R. E. The tissue form of type VII collagen is an antiparallel dimer. J Biol Chem. 1986 Apr 25;261(12):5638–5644. [PubMed] [Google Scholar]
  34. Niessen C. M., Hogervorst F., Jaspars L. H., de Melker A. A., Delwel G. O., Hulsman E. H., Kuikman I., Sonnenberg A. The alpha 6 beta 4 integrin is a receptor for both laminin and kalinin. Exp Cell Res. 1994 Apr;211(2):360–367. doi: 10.1006/excr.1994.1099. [DOI] [PubMed] [Google Scholar]
  35. Noakes P. G., Gautam M., Mudd J., Sanes J. R., Merlie J. P. Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin beta 2. Nature. 1995 Mar 16;374(6519):258–262. doi: 10.1038/374258a0. [DOI] [PubMed] [Google Scholar]
  36. Noakes P. G., Miner J. H., Gautam M., Cunningham J. M., Sanes J. R., Merlie J. P. The renal glomerulus of mice lacking s-laminin/laminin beta 2: nephrosis despite molecular compensation by laminin beta 1. Nat Genet. 1995 Aug;10(4):400–406. doi: 10.1038/ng0895-400. [DOI] [PubMed] [Google Scholar]
  37. Paulsson M. The role of Ca2+ binding in the self-aggregation of laminin-nidogen complexes. J Biol Chem. 1988 Apr 15;263(11):5425–5430. [PubMed] [Google Scholar]
  38. Pulkkinen L., Christiano A. M., Airenne T., Haakana H., Tryggvason K., Uitto J. Mutations in the gamma 2 chain gene (LAMC2) of kalinin/laminin 5 in the junctional forms of epidermolysis bullosa. Nat Genet. 1994 Mar;6(3):293–297. doi: 10.1038/ng0394-293. [DOI] [PubMed] [Google Scholar]
  39. Pulkkinen L., Christiano A. M., Gerecke D., Wagman D. W., Burgeson R. E., Pittelkow M. R., Uitto J. A homozygous nonsense mutation in the beta 3 chain gene of laminin 5 (LAMB3) in Herlitz junctional epidermolysis bullosa. Genomics. 1994 Nov 15;24(2):357–360. doi: 10.1006/geno.1994.1627. [DOI] [PubMed] [Google Scholar]
  40. Rousselle P., Lunstrum G. P., Keene D. R., Burgeson R. E. Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J Cell Biol. 1991 Aug;114(3):567–576. doi: 10.1083/jcb.114.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Ryan M. C., Tizard R., VanDevanter D. R., Carter W. G. Cloning of the LamA3 gene encoding the alpha 3 chain of the adhesive ligand epiligrin. Expression in wound repair. J Biol Chem. 1994 Sep 9;269(36):22779–22787. [PubMed] [Google Scholar]
  42. Sakai L. Y., Keene D. R., Morris N. P., Burgeson R. E. Type VII collagen is a major structural component of anchoring fibrils. J Cell Biol. 1986 Oct;103(4):1577–1586. doi: 10.1083/jcb.103.4.1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sasaki M., Kleinman H. K., Huber H., Deutzmann R., Yamada Y. Laminin, a multidomain protein. The A chain has a unique globular domain and homology with the basement membrane proteoglycan and the laminin B chains. J Biol Chem. 1988 Nov 15;263(32):16536–16544. [PubMed] [Google Scholar]
  44. Schittny J. C., Yurchenco P. D. Terminal short arm domains of basement membrane laminin are critical for its self-assembly. J Cell Biol. 1990 Mar;110(3):825–832. doi: 10.1083/jcb.110.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sonnenberg A., de Melker A. A., Martinez de Velasco A. M., Janssen H., Calafat J., Niessen C. M. Formation of hemidesmosomes in cells of a transformed murine mammary tumor cell line and mechanisms involved in adherence of these cells to laminin and kalinin. J Cell Sci. 1993 Dec;106(Pt 4):1083–1102. doi: 10.1242/jcs.106.4.1083. [DOI] [PubMed] [Google Scholar]
  46. Stepp M. A., Spurr-Michaud S., Tisdale A., Elwell J., Gipson I. K. Alpha 6 beta 4 integrin heterodimer is a component of hemidesmosomes. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8970–8974. doi: 10.1073/pnas.87.22.8970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sugiyama S., Utani A., Yamada S., Kozak C. A., Yamada Y. Cloning and expression of the mouse laminin gamma 2 (B2t) chain, a subunit of epithelial cell laminin. Eur J Biochem. 1995 Feb 15;228(1):120–128. doi: 10.1111/j.1432-1033.1995.tb20239.x. [DOI] [PubMed] [Google Scholar]
  48. Utani A., Kopp J. B., Kozak C. A., Matsuki Y., Amizuka N., Sugiyama S., Yamada Y. Mouse kalinin B1 (laminin beta 3 chain): cloning and tissue distribution. Lab Invest. 1995 Mar;72(3):300–310. [PubMed] [Google Scholar]
  49. Vailly J., Verrando P., Champliaud M. F., Gerecke D., Wagman D. W., Baudoin C., Aberdam D., Burgeson R., Bauer E., Ortonne J. P. The 100-kDa chain of nicein/kalinin is a laminin B2 chain variant. Eur J Biochem. 1994 Jan 15;219(1-2):209–218. doi: 10.1111/j.1432-1033.1994.tb19932.x. [DOI] [PubMed] [Google Scholar]
  50. Verrando P., Hsi B. L., Yeh C. J., Pisani A., Serieys N., Ortonne J. P. Monoclonal antibody GB3, a new probe for the study of human basement membranes and hemidesmosomes. Exp Cell Res. 1987 May;170(1):116–128. doi: 10.1016/0014-4827(87)90121-2. [DOI] [PubMed] [Google Scholar]
  51. Wewer U. M., Gerecke D. R., Durkin M. E., Kurtz K. S., Mattei M. G., Champliaud M. F., Burgeson R. E., Albrechtsen R. Human beta 2 chain of laminin (formerly S chain): cDNA cloning, chromosomal localization, and expression in carcinomas. Genomics. 1994 Nov 15;24(2):243–252. doi: 10.1006/geno.1994.1612. [DOI] [PubMed] [Google Scholar]
  52. Yurchenco P. D., Tsilibary E. C., Charonis A. S., Furthmayr H. Laminin polymerization in vitro. Evidence for a two-step assembly with domain specificity. J Biol Chem. 1985 Jun 25;260(12):7636–7644. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES