Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Mar 2;132(6):1061–1077. doi: 10.1083/jcb.132.6.1061

Developmental genetic analysis of troponin T mutations in striated and nonstriated muscle cells of Caenorhabditis elegans

PMCID: PMC2120761  PMID: 8601585

Abstract

We have been investigating a set of genes, collectively called mups, that are essential to striated body wall muscle cell positioning in Caenorhabditis elegans. Here we report our detailed characterization of the mup-2 locus, which encodes troponin T (TnT). Mutants for a heat- sensitive allele, called mup-2(e2346ts), and for a putative null, called mup-2(up1), are defective for embryonic body wall muscle cell contraction, sarcomere organization, and cell positioning. Characterizations of the heat-sensitive allele demonstrate that mutants are also defective for regulated muscle contraction in larval and adult body wall muscle, defective for function of the nonstriated oviduct myoepithelial sheath, and defective for epidermal morphogenesis. We cloned the mup-2 locus and its corresponding cDNA. The cDNA encodes a predicted 405-amino acid protein homologous to vertebrate and invertebrate TnT and includes an invertebrate-specific COOH-terminal tail. The mup-2 mutations lie within these cDNA sequences: mup-2(up1) is a termination codon near NH2 terminus (Glu94) and mup-2(e2346ts) is a termination codon in the COOH-terminal invertebrate-specific tail (Trp342). TnT is a muscle contractile protein that, in association with the thin filament proteins tropomyosin, troponin I and troponin C, regulates myosin-actin interaction in response to a rise in intracellular Ca2+. Our findings demonstrate multiple essential functions for TnT and provide a basis to investigate the in vivo functions and protein interactions of TnT in striated and nonstriated muscles.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ardizzi J. P., Epstein H. F. Immunochemical localization of myosin heavy chain isoforms and paramyosin in developmentally and structurally diverse muscle cell types of the nematode Caenorhabditis elegans. J Cell Biol. 1987 Dec;105(6 Pt 1):2763–2770. doi: 10.1083/jcb.105.6.2763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barstead R. J., Waterston R. H. Vinculin is essential for muscle function in the nematode. J Cell Biol. 1991 Aug;114(4):715–724. doi: 10.1083/jcb.114.4.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benian G. M., Kiff J. E., Neckelmann N., Moerman D. G., Waterston R. H. Sequence of an unusually large protein implicated in regulation of myosin activity in C. elegans. Nature. 1989 Nov 2;342(6245):45–50. doi: 10.1038/342045a0. [DOI] [PubMed] [Google Scholar]
  4. Bolten S. L., Powell-Abel P., Fischhoff D. A., Waterston R. H. The sup-7(st5) X gene of Caenorhabditis elegans encodes a tRNATrpUAG amber suppressor. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6784–6788. doi: 10.1073/pnas.81.21.6784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breitbart R. E., Nguyen H. T., Medford R. M., Destree A. T., Mahdavi V., Nadal-Ginard B. Intricate combinatorial patterns of exon splicing generate multiple regulated troponin T isoforms from a single gene. Cell. 1985 May;41(1):67–82. doi: 10.1016/0092-8674(85)90062-5. [DOI] [PubMed] [Google Scholar]
  6. Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Briggs M. M., Schachat F. N-terminal amino acid sequences of three functionally different troponin T isoforms from rabbit fast skeletal muscle. J Mol Biol. 1989 Mar 5;206(1):245–249. doi: 10.1016/0022-2836(89)90538-x. [DOI] [PubMed] [Google Scholar]
  8. Bucher E. A., de la Brousse F. C., Emerson C. P., Jr Developmental and muscle-specific regulation of avian fast skeletal troponin T isoform expression by mRNA splicing. J Biol Chem. 1989 Jul 25;264(21):12482–12491. [PubMed] [Google Scholar]
  9. Byerly L., Cassada R. C., Russell R. L. The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. Dev Biol. 1976 Jul 1;51(1):23–33. doi: 10.1016/0012-1606(76)90119-6. [DOI] [PubMed] [Google Scholar]
  10. Chen L., Krause M., Sepanski M., Fire A. The Caenorhabditis elegans MYOD homologue HLH-1 is essential for proper muscle function and complete morphogenesis. Development. 1994 Jun;120(6):1631–1641. doi: 10.1242/dev.120.6.1631. [DOI] [PubMed] [Google Scholar]
  11. Cooke R. The mechanism of muscle contraction. CRC Crit Rev Biochem. 1986;21(1):53–118. doi: 10.3109/10409238609113609. [DOI] [PubMed] [Google Scholar]
  12. Endo T., Obinata T. Troponin and its components from ascidian smooth muscle. J Biochem. 1981 May;89(5):1599–1608. doi: 10.1093/oxfordjournals.jbchem.a133355. [DOI] [PubMed] [Google Scholar]
  13. Fire A. Integrative transformation of Caenorhabditis elegans. EMBO J. 1986 Oct;5(10):2673–2680. doi: 10.1002/j.1460-2075.1986.tb04550.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fyrberg E., Fyrberg C. C., Beall C., Saville D. L. Drosophila melanogaster troponin-T mutations engender three distinct syndromes of myofibrillar abnormalities. J Mol Biol. 1990 Dec 5;216(3):657–675. doi: 10.1016/0022-2836(90)90390-8. [DOI] [PubMed] [Google Scholar]
  15. Goh P. Y., Bogaert T. Positioning and maintenance of embryonic body wall muscle attachments in C. elegans requires the mup-1 gene. Development. 1991 Mar;111(3):667–681. doi: 10.1242/dev.111.3.667. [DOI] [PubMed] [Google Scholar]
  16. Goodman C. S. The likeness of being: phylogenetically conserved molecular mechanisms of growth cone guidance. Cell. 1994 Aug 12;78(3):353–356. doi: 10.1016/0092-8674(94)90413-8. [DOI] [PubMed] [Google Scholar]
  17. Harris H. E., Tso M. Y., Epstein H. F. Actin and myosin-linked calcium regulation in the nematode Caenorhabditis elegans. Biochemical and structural properties of native filaments and purified proteins. Biochemistry. 1977 Mar 8;16(5):859–865. doi: 10.1021/bi00624a008. [DOI] [PubMed] [Google Scholar]
  18. Hedgecock E. M., Culotti J. G., Hall D. H., Stern B. D. Genetics of cell and axon migrations in Caenorhabditis elegans. Development. 1987 Jul;100(3):365–382. doi: 10.1242/dev.100.3.365. [DOI] [PubMed] [Google Scholar]
  19. Hresko M. C., Williams B. D., Waterston R. H. Assembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans. J Cell Biol. 1994 Feb;124(4):491–506. doi: 10.1083/jcb.124.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ishii N., Wadsworth W. G., Stern B. D., Culotti J. G., Hedgecock E. M. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron. 1992 Nov;9(5):873–881. doi: 10.1016/0896-6273(92)90240-e. [DOI] [PubMed] [Google Scholar]
  21. Kagawa H., Sugimoto K., Matsumoto H., Inoue T., Imadzu H., Takuwa K., Sakube Y. Genome structure, mapping and expression of the tropomyosin gene tmy-1 of Caenorhabditis elegans. J Mol Biol. 1995 Sep 1;251(5):603–613. doi: 10.1006/jmbi.1995.0459. [DOI] [PubMed] [Google Scholar]
  22. Kimble J., Hirsh D. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol. 1979 Jun;70(2):396–417. doi: 10.1016/0012-1606(79)90035-6. [DOI] [PubMed] [Google Scholar]
  23. Kirby C., Kusch M., Kemphues K. Mutations in the par genes of Caenorhabditis elegans affect cytoplasmic reorganization during the first cell cycle. Dev Biol. 1990 Nov;142(1):203–215. doi: 10.1016/0012-1606(90)90164-e. [DOI] [PubMed] [Google Scholar]
  24. Leavis P. C., Gergely J. Thin filament proteins and thin filament-linked regulation of vertebrate muscle contraction. CRC Crit Rev Biochem. 1984;16(3):235–305. doi: 10.3109/10409238409108717. [DOI] [PubMed] [Google Scholar]
  25. Maruyama I. N., Brenner S. A selective lambda phage cloning vector with automatic excision of the insert in a plasmid. Gene. 1992 Oct 21;120(2):135–141. doi: 10.1016/0378-1119(92)90086-5. [DOI] [PubMed] [Google Scholar]
  26. Meedel T. H., Hastings K. E. Striated muscle-type tropomyosin in a chordate smooth muscle, ascidian body-wall muscle. J Biol Chem. 1993 Mar 25;268(9):6755–6764. [PubMed] [Google Scholar]
  27. Mello C. C., Kramer J. M., Stinchcomb D., Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991 Dec;10(12):3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Meneely P. M., Herman R. K. Lethals, steriles and deficiencies in a region of the X chromosome of Caenorhabditis elegans. Genetics. 1979 May;92(1):99–115. doi: 10.1093/genetics/92.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Michelsson J. E., Pettilä M., Valtakari T., Leivo I., Aho H. J. Isolation of bone from muscles prevents the development of experimental callus-like heterotopic bone. A study of the interaction of bone and muscle in new bone formation. Clin Orthop Relat Res. 1994 May;(302):266–272. [PubMed] [Google Scholar]
  30. O'Sullivan M. E., Bronk J. T., Chao E. Y., Kelly P. J. Experimental study of the effect of weight bearing on fracture healing in the canine tibia. Clin Orthop Relat Res. 1994 May;(302):273–283. [PubMed] [Google Scholar]
  31. Okkema P. G., Harrison S. W., Plunger V., Aryana A., Fire A. Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics. 1993 Oct;135(2):385–404. doi: 10.1093/genetics/135.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pearlman J. A., Powaser P. A., Elledge S. J., Caskey C. T. Troponin T is capable of binding dystrophin via a leucine zipper. FEBS Lett. 1994 Nov 7;354(2):183–186. doi: 10.1016/0014-5793(94)01119-2. [DOI] [PubMed] [Google Scholar]
  33. Pearlstone J. R., Johnson P., Carpenter M. R., Smillie L. B. Primary structure of rabbit skeletal muscle troponin-T. Sequence determination of the NH2-terminal fragment CB3 and the complete sequence of troponin-T. J Biol Chem. 1977 Feb 10;252(3):983–989. [PubMed] [Google Scholar]
  34. Priess J. R., Hirsh D. I. Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev Biol. 1986 Sep;117(1):156–173. doi: 10.1016/0012-1606(86)90358-1. [DOI] [PubMed] [Google Scholar]
  35. Probst W. C., Cropper E. C., Heierhorst J., Hooper S. L., Jaffe H., Vilim F., Beushausen S., Kupfermann I., Weiss K. R. cAMP-dependent phosphorylation of Aplysia twitchin may mediate modulation of muscle contractions by neuropeptide cotransmitters. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8487–8491. doi: 10.1073/pnas.91.18.8487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rogalski T. M., Williams B. D., Mullen G. P., Moerman D. G. Products of the unc-52 gene in Caenorhabditis elegans are homologous to the core protein of the mammalian basement membrane heparan sulfate proteoglycan. Genes Dev. 1993 Aug;7(8):1471–1484. doi: 10.1101/gad.7.8.1471. [DOI] [PubMed] [Google Scholar]
  37. Strome S. Fluorescence visualization of the distribution of microfilaments in gonads and early embryos of the nematode Caenorhabditis elegans. J Cell Biol. 1986 Dec;103(6 Pt 1):2241–2252. doi: 10.1083/jcb.103.6.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sulston J. E., Schierenberg E., White J. G., Thomson J. N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol. 1983 Nov;100(1):64–119. doi: 10.1016/0012-1606(83)90201-4. [DOI] [PubMed] [Google Scholar]
  39. Thierfelder L., Watkins H., MacRae C., Lamas R., McKenna W., Vosberg H. P., Seidman J. G., Seidman C. E. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell. 1994 Jun 3;77(5):701–712. doi: 10.1016/0092-8674(94)90054-x. [DOI] [PubMed] [Google Scholar]
  40. Venolia L., Waterston R. H. The unc-45 gene of Caenorhabditis elegans is an essential muscle-affecting gene with maternal expression. Genetics. 1990 Oct;126(2):345–353. doi: 10.1093/genetics/126.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Waterston R. H. The minor myosin heavy chain, mhcA, of Caenorhabditis elegans is necessary for the initiation of thick filament assembly. EMBO J. 1989 Nov;8(11):3429–3436. doi: 10.1002/j.1460-2075.1989.tb08507.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Watkins H., McKenna W. J., Thierfelder L., Suk H. J., Anan R., O'Donoghue A., Spirito P., Matsumori A., Moravec C. S., Seidman J. G. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med. 1995 Apr 20;332(16):1058–1064. doi: 10.1056/NEJM199504203321603. [DOI] [PubMed] [Google Scholar]
  43. Williams B. D., Schrank B., Huynh C., Shownkeen R., Waterston R. H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics. 1992 Jul;131(3):609–624. doi: 10.1093/genetics/131.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Williams B. D., Waterston R. H. Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. J Cell Biol. 1994 Feb;124(4):475–490. doi: 10.1083/jcb.124.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES