Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Apr 2;133(2):457–468. doi: 10.1083/jcb.133.2.457

Chondrogenic differentiation of clonal mouse embryonic cell line ATDC5 in vitro: differentiation-dependent gene expression of parathyroid hormone (PTH)/PTH-related peptide receptor

PMCID: PMC2120800  PMID: 8609176

Abstract

The regulatory role of parathyroid hormone (PTH)/PTH-related peptide (PTHrP) signaling has been implicated in embryonic skeletal development. Here, we studied chondrogenic differentiation of the mouse embryonal carcinoma-derived clonal cell line ATDC5 as a model of chondrogenesis in the early stages of endochondral bone development. ATDC5 cells retain the properties of chondroprogenitor cells, and rapidly proliferate in the presence of 5% FBS. Insulin (10 micrograms/ml) induced chondrogenic differentiation of the cells in a postconfluent phase through a cellular condensation process, resulting in the formation of cartilage nodules, as evidenced by expression of type II collagen and aggrecan genes. We found that differentiated cultures of ATDC5 cells abundantly expressed the high affinity receptor for PTH (Mr approximately 80 kD; Kd = 3.9 nM; 3.2 x 10(5) sites/cell). The receptors on differentiated cells were functionally active, as evidenced by a PTH-dependent activation of adenylate cyclase. Specific binding of PTH to cells markedly increased with the formation of cartilage nodules, while undifferentiated cells failed to show specific binding of PTH. Northern blot analysis indicated that expression of the PTH/PTHrP receptor gene became detectable at the early stage of chondrogenesis of ATDC5 cells, preceding induction of aggrecan gene expression. Expression of the PTH/PTHrP receptor gene was undetectable in undifferentiated cells. The level of PTH/PTHrP receptor mRNA was markedly elevated parallel to that of type II collagen mRNA. These lines of evidence suggest that the expression of functional PTH/PTHrP receptor is associated with the onset of chondrogenesis. In addition, activation of the receptor by exogenous PTH or PTHrP significantly interfered with cellular condensation and the subsequent formation of cartilage nodules, suggesting a novel site of PTHrP action.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe N., Yoshioka H., Inoue H., Ninomiya Y. The complete primary structure of the long form of mouse alpha 1(IX) collagen chain and its expression during limb development. Biochim Biophys Acta. 1994 Jan 11;1204(1):61–67. doi: 10.1016/0167-4838(94)90033-7. [DOI] [PubMed] [Google Scholar]
  2. Abou-Samra A. B., Jueppner H., Westerberg D., Potts J. T., Jr, Segre G. V. Parathyroid hormone causes translocation of protein kinase-C from cytosol to membranes in rat osteosarcoma cells. Endocrinology. 1989 Mar;124(3):1107–1113. doi: 10.1210/endo-124-3-1107. [DOI] [PubMed] [Google Scholar]
  3. Abou-Samra A. B., Jüppner H., Force T., Freeman M. W., Kong X. F., Schipani E., Urena P., Richards J., Bonventre J. V., Potts J. T., Jr Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2732–2736. doi: 10.1073/pnas.89.7.2732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Amizuka N., Warshawsky H., Henderson J. E., Goltzman D., Karaplis A. C. Parathyroid hormone-related peptide-depleted mice show abnormal epiphyseal cartilage development and altered endochondral bone formation. J Cell Biol. 1994 Sep;126(6):1611–1623. doi: 10.1083/jcb.126.6.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Atsumi T., Miwa Y., Kimata K., Ikawa Y. A chondrogenic cell line derived from a differentiating culture of AT805 teratocarcinoma cells. Cell Differ Dev. 1990 May;30(2):109–116. doi: 10.1016/0922-3371(90)90079-c. [DOI] [PubMed] [Google Scholar]
  6. Bassas L., Lesniak M. A., Serrano J., Roth J., de Pablo F. Developmental regulation of insulin and type I insulin-like growth factor receptors and absence of type II receptors in chicken embryo tissues. Diabetes. 1988 May;37(5):637–644. doi: 10.2337/diab.37.5.637. [DOI] [PubMed] [Google Scholar]
  7. Bernier S. M., Goltzman D. Regulation of expression of the chondrocytic phenotype in a skeletal cell line (CFK2) in vitro. J Bone Miner Res. 1993 Apr;8(4):475–484. doi: 10.1002/jbmr.5650080412. [DOI] [PubMed] [Google Scholar]
  8. Campos R. V., Asa S. L., Drucker D. J. Immunocytochemical localization of parathyroid hormone-like peptide in the rat fetus. Cancer Res. 1991 Dec 1;51(23 Pt 1):6351–6357. [PubMed] [Google Scholar]
  9. Capehart A. A., Biddulph D. M. Development of PTH-responsive adenylate cyclase activity during chondrogenesis in cultured mesenchyme from chick limb buds. Calcif Tissue Int. 1991 Jun;48(6):400–406. doi: 10.1007/BF02556453. [DOI] [PubMed] [Google Scholar]
  10. Chen P., Carrington J. L., Hammonds R. G., Reddi A. H. Stimulation of chondrogenesis in limb bud mesoderm cells by recombinant human bone morphogenetic protein 2B (BMP-2B) and modulation by transforming growth factor beta 1 and beta 2. Exp Cell Res. 1991 Aug;195(2):509–515. doi: 10.1016/0014-4827(91)90403-h. [DOI] [PubMed] [Google Scholar]
  11. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  12. Cohn M. J., Izpisúa-Belmonte J. C., Abud H., Heath J. K., Tickle C. Fibroblast growth factors induce additional limb development from the flank of chick embryos. Cell. 1995 Mar 10;80(5):739–746. doi: 10.1016/0092-8674(95)90352-6. [DOI] [PubMed] [Google Scholar]
  13. Doege K. J., Sasaki M., Kimura T., Yamada Y. Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human-specific repeats, and additional alternatively spliced forms. J Biol Chem. 1991 Jan 15;266(2):894–902. [PubMed] [Google Scholar]
  14. Enomoto M., Kinoshita A., Pan H. O., Suzuki F., Yamamoto I., Takigawa M. Demonstration of receptors for parathyroid hormone on cultured rabbit costal chondrocytes. Biochem Biophys Res Commun. 1989 Aug 15;162(3):1222–1229. doi: 10.1016/0006-291x(89)90804-8. [DOI] [PubMed] [Google Scholar]
  15. Ferrari S. L., Rizzoli R., Bonjour J. P. Parathyroid hormone-related protein production by primary cultures of mammary epithelial cells. J Cell Physiol. 1992 Feb;150(2):304–311. doi: 10.1002/jcp.1041500213. [DOI] [PubMed] [Google Scholar]
  16. Fujimori A., Cheng S. L., Avioli L. V., Civitelli R. Structure-function relationship of parathyroid hormone: activation of phospholipase-C, protein kinase-A and -C in osteosarcoma cells. Endocrinology. 1992 Jan;130(1):29–36. doi: 10.1210/endo.130.1.1727705. [DOI] [PubMed] [Google Scholar]
  17. Geduspan J. S., Solursh M. Effects of the mesonephros and insulin-like growth factor I on chondrogenesis of limb explants. Dev Biol. 1993 Apr;156(2):500–508. doi: 10.1006/dbio.1993.1096. [DOI] [PubMed] [Google Scholar]
  18. George M., Chepenik K. P., Schneiderman M. H. Proliferation of cells undergoing chondrogenesis in vitro. Differentiation. 1983;24(3):245–249. doi: 10.1111/j.1432-0436.1983.tb01327.x. [DOI] [PubMed] [Google Scholar]
  19. Grigoriadis A. E., Heersche J. N., Aubin J. E. Continuously growing bipotential and monopotential myogenic, adipogenic, and chondrogenic subclones isolated from the multipotential RCJ 3.1 clonal cell line. Dev Biol. 1990 Dec;142(2):313–318. doi: 10.1016/0012-1606(90)90352-j. [DOI] [PubMed] [Google Scholar]
  20. Hiraki Y., Inoue H., Shigeno C., Sanma Y., Bentz H., Rosen D. M., Asada A., Suzuki F. Bone morphogenetic proteins (BMP-2 and BMP-3) promote growth and expression of the differentiated phenotype of rabbit chondrocytes and osteoblastic MC3T3-E1 cells in vitro. J Bone Miner Res. 1991 Dec;6(12):1373–1385. doi: 10.1002/jbmr.5650061215. [DOI] [PubMed] [Google Scholar]
  21. Hiraki Y., Yutani Y., Takigawa M., Kato Y., Suzuki F. Differential effects of parathyroid hormone and somatomedin-like growth factors on the sizes of proteoglycan monomers and their synthesis in rabbit costal chondrocytes in culture. Biochim Biophys Acta. 1985 Jun 30;845(3):445–453. doi: 10.1016/0167-4889(85)90210-1. [DOI] [PubMed] [Google Scholar]
  22. Horiuchi N., Holick M. F., Potts J. T., Jr, Rosenblatt M. A parathyroid hormone inhibitor in vivo: design and biological evaluation of a hormone analog. Science. 1983 Jun 3;220(4601):1053–1055. doi: 10.1126/science.6302844. [DOI] [PubMed] [Google Scholar]
  23. Iida-Klein A., Varlotta V., Hahn T. J. Protein kinase C activity in UMR-106-01 cells: effects of parathyroid hormone and insulin. J Bone Miner Res. 1989 Oct;4(5):767–774. doi: 10.1002/jbmr.5650040517. [DOI] [PubMed] [Google Scholar]
  24. Janulis M., Tembe V., Favus M. J. Role of protein kinase C in parathyroid hormone stimulation of renal 1,25-dihydroxyvitamin D3 secretion. J Clin Invest. 1992 Dec;90(6):2278–2283. doi: 10.1172/JCI116114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Johnson-Wint B., Hollis S. A rapid in situ deoxyribonucleic acid assay for determining cell number in culture and tissue. Anal Biochem. 1982 May 15;122(2):338–344. doi: 10.1016/0003-2697(82)90292-5. [DOI] [PubMed] [Google Scholar]
  26. Jones C. M., Lyons K. M., Hogan B. L. Involvement of Bone Morphogenetic Protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development. 1991 Feb;111(2):531–542. doi: 10.1242/dev.111.2.531. [DOI] [PubMed] [Google Scholar]
  27. Jouishomme H., Whitfield J. F., Chakravarthy B., Durkin J. P., Gagnon L., Isaacs R. J., MacLean S., Neugebauer W., Willick G., Rixon R. H. The protein kinase-C activation domain of the parathyroid hormone. Endocrinology. 1992 Jan;130(1):53–60. doi: 10.1210/endo.130.1.1727720. [DOI] [PubMed] [Google Scholar]
  28. Jüppner H., Abou-Samra A. B., Freeman M., Kong X. F., Schipani E., Richards J., Kolakowski L. F., Jr, Hock J., Potts J. T., Jr, Kronenberg H. M. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science. 1991 Nov 15;254(5034):1024–1026. doi: 10.1126/science.1658941. [DOI] [PubMed] [Google Scholar]
  29. Jüppner H., Abou-Samra A. B., Uneno S., Gu W. X., Potts J. T., Jr, Segre G. V. The parathyroid hormone-like peptide associated with humoral hypercalcemia of malignancy and parathyroid hormone bind to the same receptor on the plasma membrane of ROS 17/2.8 cells. J Biol Chem. 1988 Jun 25;263(18):8557–8560. [PubMed] [Google Scholar]
  30. Karaplis A. C., Luz A., Glowacki J., Bronson R. T., Tybulewicz V. L., Kronenberg H. M., Mulligan R. C. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 1994 Feb 1;8(3):277–289. doi: 10.1101/gad.8.3.277. [DOI] [PubMed] [Google Scholar]
  31. Katagiri T., Yamaguchi A., Komaki M., Abe E., Takahashi N., Ikeda T., Rosen V., Wozney J. M., Fujisawa-Sehara A., Suda T. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol. 1994 Dec;127(6 Pt 1):1755–1766. doi: 10.1083/jcb.127.6.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kimura T., Mattei M. G., Stevens J. W., Goldring M. B., Ninomiya Y., Olsen B. R. Molecular cloning of rat and human type IX collagen cDNA and localization of the alpha 1(IX) gene on the human chromosome 6. Eur J Biochem. 1989 Jan 15;179(1):71–78. doi: 10.1111/j.1432-1033.1989.tb14522.x. [DOI] [PubMed] [Google Scholar]
  33. Kingsley D. M., Bland A. E., Grubber J. M., Marker P. C., Russell L. B., Copeland N. G., Jenkins N. A. The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGF beta superfamily. Cell. 1992 Oct 30;71(3):399–410. doi: 10.1016/0092-8674(92)90510-j. [DOI] [PubMed] [Google Scholar]
  34. Koike T., Iwamoto M., Shimazu A., Nakashima K., Suzuki F., Kato Y. Potent mitogenic effects of parathyroid hormone (PTH) on embryonic chick and rabbit chondrocytes. Differential effects of age on growth, proteoglycan, and cyclic AMP responses of chondrocytes to PTH. J Clin Invest. 1990 Mar;85(3):626–631. doi: 10.1172/JCI114484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kosher R. A., Kulyk W. M., Gay S. W. Collagen gene expression during limb cartilage differentiation. J Cell Biol. 1986 Apr;102(4):1151–1156. doi: 10.1083/jcb.102.4.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kosher R. A., Savage M. P. Studies on the possible role of cyclic AMP in limb morphogenesis and differentiation. J Embryol Exp Morphol. 1980 Apr;56:91–105. [PubMed] [Google Scholar]
  37. Kulyk W. M., Rodgers B. J., Greer K., Kosher R. A. Promotion of embryonic chick limb cartilage differentiation by transforming growth factor-beta. Dev Biol. 1989 Oct;135(2):424–430. doi: 10.1016/0012-1606(89)90191-7. [DOI] [PubMed] [Google Scholar]
  38. Kulyk W. M., Upholt W. B., Kosher R. A. Fibronectin gene expression during limb cartilage differentiation. Development. 1989 Jul;106(3):449–455. doi: 10.1242/dev.106.3.449. [DOI] [PubMed] [Google Scholar]
  39. Lee K., Deeds J. D., Segre G. V. Expression of parathyroid hormone-related peptide and its receptor messenger ribonucleic acids during fetal development of rats. Endocrinology. 1995 Feb;136(2):453–463. doi: 10.1210/endo.136.2.7835276. [DOI] [PubMed] [Google Scholar]
  40. Lyons K. M., Pelton R. W., Hogan B. L. Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A). Development. 1990 Aug;109(4):833–844. doi: 10.1242/dev.109.4.833. [DOI] [PubMed] [Google Scholar]
  41. Niswander L., Tickle C., Vogel A., Booth I., Martin G. R. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell. 1993 Nov 5;75(3):579–587. doi: 10.1016/0092-8674(93)90391-3. [DOI] [PubMed] [Google Scholar]
  42. Oberlender S. A., Tuan R. S. Expression and functional involvement of N-cadherin in embryonic limb chondrogenesis. Development. 1994 Jan;120(1):177–187. doi: 10.1242/dev.120.1.177. [DOI] [PubMed] [Google Scholar]
  43. Rodgers B. J., Kulyk W. M., Kosher R. A. Stimulation of limb cartilage differentiation by cyclic AMP is dependent on cell density. Cell Differ Dev. 1989 Dec;28(3):179–187. doi: 10.1016/0922-3371(89)90003-8. [DOI] [PubMed] [Google Scholar]
  44. Rosen V., Nove J., Song J. J., Thies R. S., Cox K., Wozney J. M. Responsiveness of clonal limb bud cell lines to bone morphogenetic protein 2 reveals a sequential relationship between cartilage and bone cell phenotypes. J Bone Miner Res. 1994 Nov;9(11):1759–1768. doi: 10.1002/jbmr.5650091113. [DOI] [PubMed] [Google Scholar]
  45. Rousseau F., Bonaventure J., Legeai-Mallet L., Pelet A., Rozet J. M., Maroteaux P., Le Merrer M., Munnich A. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature. 1994 Sep 15;371(6494):252–254. doi: 10.1038/371252a0. [DOI] [PubMed] [Google Scholar]
  46. Révillion-Carette F., Desbiens X., Meunier L., Bart A. Chondrogenesis in mouse limb buds in vitro: effects of dibutyryl cyclic AMP treatment. Differentiation. 1986;33(2):121–129. doi: 10.1111/j.1432-0436.1986.tb00417.x. [DOI] [PubMed] [Google Scholar]
  47. Schermer D. T., Chan S. D., Bruce R., Nissenson R. A., Wood W. I., Strewler G. J. Chicken parathyroid hormone-related protein and its expression during embryologic development. J Bone Miner Res. 1991 Feb;6(2):149–155. doi: 10.1002/jbmr.5650060208. [DOI] [PubMed] [Google Scholar]
  48. Schipani E., Kruse K., Jüppner H. A constitutively active mutant PTH-PTHrP receptor in Jansen-type metaphyseal chondrodysplasia. Science. 1995 Apr 7;268(5207):98–100. doi: 10.1126/science.7701349. [DOI] [PubMed] [Google Scholar]
  49. Shiang R., Thompson L. M., Zhu Y. Z., Church D. M., Fielder T. J., Bocian M., Winokur S. T., Wasmuth J. J. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell. 1994 Jul 29;78(2):335–342. doi: 10.1016/0092-8674(94)90302-6. [DOI] [PubMed] [Google Scholar]
  50. Shigeno C., Hiraki Y., Westerberg D. P., Potts J. T., Jr, Segre G. V. Photoaffinity labeling of parathyroid hormone receptors in clonal rat osteosarcoma cells. J Biol Chem. 1988 Mar 15;263(8):3864–3871. [PubMed] [Google Scholar]
  51. Shigeno C., Yamamoto I., Kitamura N., Noda T., Lee K., Sone T., Shiomi K., Ohtaka A., Fujii N., Yajima H. Interaction of human parathyroid hormone-related peptide with parathyroid hormone receptors in clonal rat osteosarcoma cells. J Biol Chem. 1988 Dec 5;263(34):18369–18377. [PubMed] [Google Scholar]
  52. Solursh M., Reiter R. S., Ahrens P. B., Vertel B. M. Stage- and position-related changes in chondrogenic response of chick embryonic wing mesenchyme to treatment with dibutyryl cyclic AMP. Dev Biol. 1981 Apr 15;83(1):9–19. doi: 10.1016/s0012-1606(81)80003-6. [DOI] [PubMed] [Google Scholar]
  53. Storm E. E., Huynh T. V., Copeland N. G., Jenkins N. A., Kingsley D. M., Lee S. J. Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily. Nature. 1994 Apr 14;368(6472):639–643. doi: 10.1038/368639a0. [DOI] [PubMed] [Google Scholar]
  54. Suzuki F., Yoneda T., Shimomura Y. Calcitonin and parathyroid-hormone stimulation of acid mucopolysaccharide synthesis in cultured chondrocytes isolated from growth cartilage. FEBS Lett. 1976 Nov;70(1):155–158. doi: 10.1016/0014-5793(76)80747-8. [DOI] [PubMed] [Google Scholar]
  55. Takano T., Takigawa M., Shirai E., Suzuki F., Rosenblatt M. Effects of synthetic analogs and fragments of bovine parathyroid hormone on adenosine 3',5'-monophosphate level, ornithine decarboxylase activity, and glycosaminoglycan synthesis in rabbit costal chondrocytes in culture: structure-activity relations. Endocrinology. 1985 Jun;116(6):2536–2542. doi: 10.1210/endo-116-6-2536. [DOI] [PubMed] [Google Scholar]
  56. Telford N. A., Hogan A., Franz C. R., Schultz G. A. Expression of genes for insulin and insulin-like growth factors and receptors in early postimplantation mouse embryos and embryonal carcinoma cells. Mol Reprod Dev. 1990 Oct;27(2):81–92. doi: 10.1002/mrd.1080270202. [DOI] [PubMed] [Google Scholar]
  57. Ureña P., Kong X. F., Abou-Samra A. B., Jüppner H., Kronenberg H. M., Potts J. T., Jr, Segre G. V. Parathyroid hormone (PTH)/PTH-related peptide receptor messenger ribonucleic acids are widely distributed in rat tissues. Endocrinology. 1993 Aug;133(2):617–623. doi: 10.1210/endo.133.2.8393771. [DOI] [PubMed] [Google Scholar]
  58. Wysolmerski J. J., Broadus A. E., Zhou J., Fuchs E., Milstone L. M., Philbrick W. M. Overexpression of parathyroid hormone-related protein in the skin of transgenic mice interferes with hair follicle development. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1133–1137. doi: 10.1073/pnas.91.3.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Zull J. E., Youngman K., Caplan A. I. The development of hormonal responses of cultured embryonic chick limb mesenchymal cells. Dev Biol. 1981 Aug;86(1):61–68. doi: 10.1016/0012-1606(81)90315-8. [DOI] [PubMed] [Google Scholar]
  60. van de Stolpe A., Karperien M., Löwik C. W., Jüppner H., Segre G. V., Abou-Samra A. B., de Laat S. W., Defize L. H. Parathyroid hormone-related peptide as an endogenous inducer of parietal endoderm differentiation. J Cell Biol. 1993 Jan;120(1):235–243. doi: 10.1083/jcb.120.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES