Abstract
Dictyostelium cells that lack the myoB isoform were previously shown to exhibit reduced efficiencies of phagocytosis and chemotactic aggregation ("streaming") and to crawl at about half the speed of wild- type cells. Of the four other Dictyostelium myosin I isoforms identified to date, myoC and myoD are the most similar to myoB in terms of tail domain sequence. Furthermore, we show here that myoC, like myoB and myoD, is concentrated in actin-rich cortical regions like the leading edge of migrating cells. To look for evidence of functional overlap between these isoforms, we analyzed myoB, myoC, and myoD single mutants, myoB/myoD double mutants, and myoB/myoC/myoD triple mutants, which were created using a combination of gene targeting techniques and constitutive expression of antisense RNA. With regard to the speed of locomoting, aggregation-stage cells, of the three single mutants, only the myoB mutant was significantly slower. Moreover, double and triple mutants were only slightly slower than the myoB single mutant. Consistent with this, the protein level of myoB alone rises dramatically during early development, suggesting that a special demand is placed on this one isoform when cells become highly motile. We also found, however, that the absolute amount of myoB protein in aggregation- stage cells is much higher than that for myoC and myoD, suggesting that what appears to be a case of nonoverlapping function could be the result of large differences in the amounts of functionally overlapping isoforms. Streaming assays also suggest that myoC plays a significant role in some aspect of motility other than cell speed. With regard to phagocytosis, both myoB and myoC single mutants exhibited significant reductions in initial rate, suggesting that these two isoforms perform nonredundant roles in supporting the phagocytic process. In triple mutants these defects were not additive, however. Finally, because double and triple mutants exhibited significant and progressive decreases in doubling times, we also measured the kinetics of fluid phase endocytic flux (uptake, transit time, efflux). Not only do all three isoforms contribute to this process, but their contributions are synergistic. While these results, when taken together, refute the simple notion that these three "classic" myosin I isoforms perform exclusively identical functions, they do reveal that all three share in supporting at least one cellular process (endocytosis), and they identify several other processes (motility, streaming, and phagocytosis) that are supported to a significant extent by either individual isoforms or various combinations of them.
Full Text
The Full Text of this article is available as a PDF (3.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bacon R. A., Cohen C. J., Lewin D. A., Mellman I. Dictyostelium discoideum mutants with temperature-sensitive defects in endocytosis. J Cell Biol. 1994 Oct;127(2):387–399. doi: 10.1083/jcb.127.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baines I. C., Brzeska H., Korn E. D. Differential localization of Acanthamoeba myosin I isoforms. J Cell Biol. 1992 Dec;119(5):1193–1203. doi: 10.1083/jcb.119.5.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baines I. C., Corigliano-Murphy A., Korn E. D. Quantification and localization of phosphorylated myosin I isoforms in Acanthamoeba castellanii. J Cell Biol. 1995 Aug;130(3):591–603. doi: 10.1083/jcb.130.3.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen C. J., Bacon R., Clarke M., Joiner K., Mellman I. Dictyostelium discoideum mutants with conditional defects in phagocytosis. J Cell Biol. 1994 Aug;126(4):955–966. doi: 10.1083/jcb.126.4.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Condeelis J. Understanding the cortex of crawling cells: insights from Dictyostelium. Trends Cell Biol. 1993 Nov;3(11):371–376. doi: 10.1016/0962-8924(93)90085-f. [DOI] [PubMed] [Google Scholar]
- Cox D., Ridsdale J. A., Condeelis J., Hartwig J. Genetic deletion of ABP-120 alters the three-dimensional organization of actin filaments in Dictyostelium pseudopods. J Cell Biol. 1995 Mar;128(5):819–835. doi: 10.1083/jcb.128.5.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cupers P., Veithen A., Kiss A., Baudhuin P., Courtoy P. J. Clathrin polymerization is not required for bulk-phase endocytosis in rat fetal fibroblasts. J Cell Biol. 1994 Nov;127(3):725–735. doi: 10.1083/jcb.127.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Lozanne A., Spudich J. A. Disruption of the Dictyostelium myosin heavy chain gene by homologous recombination. Science. 1987 May 29;236(4805):1086–1091. doi: 10.1126/science.3576222. [DOI] [PubMed] [Google Scholar]
- Fukui Y., Lynch T. J., Brzeska H., Korn E. D. Myosin I is located at the leading edges of locomoting Dictyostelium amoebae. Nature. 1989 Sep 28;341(6240):328–331. doi: 10.1038/341328a0. [DOI] [PubMed] [Google Scholar]
- Gottlieb T. A., Ivanov I. E., Adesnik M., Sabatini D. D. Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J Cell Biol. 1993 Feb;120(3):695–710. doi: 10.1083/jcb.120.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammer J. A., 3rd, Jung G. The sequence of the dictyostelium myo J heavy chain gene predicts a novel, dimeric, unconventional myosin with a heavy chain molecular mass of 258 kDa. J Biol Chem. 1996 Mar 22;271(12):7120–7127. doi: 10.1074/jbc.271.12.7120. [DOI] [PubMed] [Google Scholar]
- Hammer J. A., 3rd The structure and function of unconventional myosins: a review. J Muscle Res Cell Motil. 1994 Feb;15(1):1–10. doi: 10.1007/BF00123827. [DOI] [PubMed] [Google Scholar]
- Hansen S. H., Sandvig K., van Deurs B. Molecules internalized by clathrin-independent endocytosis are delivered to endosomes containing transferrin receptors. J Cell Biol. 1993 Oct;123(1):89–97. doi: 10.1083/jcb.123.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hewlett L. J., Prescott A. R., Watts C. The coated pit and macropinocytic pathways serve distinct endosome populations. J Cell Biol. 1994 Mar;124(5):689–703. doi: 10.1083/jcb.124.5.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hug C., Jay P. Y., Reddy I., McNally J. G., Bridgman P. C., Elson E. L., Cooper J. A. Capping protein levels influence actin assembly and cell motility in dictyostelium. Cell. 1995 May 19;81(4):591–600. doi: 10.1016/0092-8674(95)90080-2. [DOI] [PubMed] [Google Scholar]
- Janmey P. A. Mechanical properties of cytoskeletal polymers. Curr Opin Cell Biol. 1991 Feb;3(1):4–11. doi: 10.1016/0955-0674(91)90159-v. [DOI] [PubMed] [Google Scholar]
- Jung G., Fukui Y., Martin B., Hammer J. A., 3rd Sequence, expression pattern, intracellular localization, and targeted disruption of the Dictyostelium myosin ID heavy chain isoform. J Biol Chem. 1993 Jul 15;268(20):14981–14990. [PubMed] [Google Scholar]
- Jung G., Hammer J. A., 3rd Generation and characterization of Dictyostelium cells deficient in a myosin I heavy chain isoform. J Cell Biol. 1990 Jun;110(6):1955–1964. doi: 10.1083/jcb.110.6.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jung G., Hammer J. A., 3rd The actin binding site in the tail domain of Dictyostelium myosin IC (myoC) resides within the glycine- and proline-rich sequence (tail homology region 2). FEBS Lett. 1994 Apr 4;342(2):197–202. doi: 10.1016/0014-5793(94)80500-8. [DOI] [PubMed] [Google Scholar]
- Jung G., Saxe C. L., 3rd, Kimmel A. R., Hammer J. A., 3rd Dictyostelium discoideum contains a gene encoding a myosin I heavy chain. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6186–6190. doi: 10.1073/pnas.86.16.6186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein G., Satre M. Kinetics of fluid-phase pinocytosis in Dictyostelium discoideum amoebae. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1146–1152. doi: 10.1016/s0006-291x(86)80402-8. [DOI] [PubMed] [Google Scholar]
- Korn E. D., Atkinson M. A., Brzeska H., Hammer J. A., 3rd, Jung G., Lynch T. J. Structure-function studies on Acanthamoeba myosins IA, IB, and II. J Cell Biochem. 1988 Jan;36(1):37–50. doi: 10.1002/jcb.240360105. [DOI] [PubMed] [Google Scholar]
- Kübler E., Riezman H. Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J. 1993 Jul;12(7):2855–2862. doi: 10.1002/j.1460-2075.1993.tb05947.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- McGoldrick C. A., Gruver C., May G. S. myoA of Aspergillus nidulans encodes an essential myosin I required for secretion and polarized growth. J Cell Biol. 1995 Feb;128(4):577–587. doi: 10.1083/jcb.128.4.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mooseker M. S., Cheney R. E. Unconventional myosins. Annu Rev Cell Dev Biol. 1995;11:633–675. doi: 10.1146/annurev.cb.11.110195.003221. [DOI] [PubMed] [Google Scholar]
- Nolta K. V., Rodriguez-Paris J. M., Steck T. L. Analysis of successive endocytic compartments isolated from Dictyostelium discoideum by magnetic fractionation. Biochim Biophys Acta. 1994 Nov 10;1224(2):237–246. doi: 10.1016/0167-4889(94)90196-1. [DOI] [PubMed] [Google Scholar]
- Novak K. D., Peterson M. D., Reedy M. C., Titus M. A. Dictyostelium myosin I double mutants exhibit conditional defects in pinocytosis. J Cell Biol. 1995 Dec;131(5):1205–1221. doi: 10.1083/jcb.131.5.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Halloran T. J., Anderson R. G. Clathrin heavy chain is required for pinocytosis, the presence of large vacuoles, and development in Dictyostelium. J Cell Biol. 1992 Sep;118(6):1371–1377. doi: 10.1083/jcb.118.6.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Padh H., Ha J., Lavasa M., Steck T. L. A post-lysosomal compartment in Dictyostelium discoideum. J Biol Chem. 1993 Mar 25;268(9):6742–6747. [PubMed] [Google Scholar]
- Pasternak C., Spudich J. A., Elson E. L. Capping of surface receptors and concomitant cortical tension are generated by conventional myosin. Nature. 1989 Oct 12;341(6242):549–551. doi: 10.1038/341549a0. [DOI] [PubMed] [Google Scholar]
- Peterson M. D., Novak K. D., Reedy M. C., Ruman J. I., Titus M. A. Molecular genetic analysis of myoC, a Dictyostelium myosin I. J Cell Sci. 1995 Mar;108(Pt 3):1093–1103. doi: 10.1242/jcs.108.3.1093. [DOI] [PubMed] [Google Scholar]
- Podolski J. L., Steck T. L. Length distribution of F-actin in Dictyostelium discoideum. J Biol Chem. 1990 Jan 25;265(3):1312–1318. [PubMed] [Google Scholar]
- Racoosin E. L., Swanson J. A. M-CSF-induced macropinocytosis increases solute endocytosis but not receptor-mediated endocytosis in mouse macrophages. J Cell Sci. 1992 Aug;102(Pt 4):867–880. doi: 10.1242/jcs.102.4.867. [DOI] [PubMed] [Google Scholar]
- Reinhard J., Scheel A. A., Diekmann D., Hall A., Ruppert C., Bähler M. A novel type of myosin implicated in signalling by rho family GTPases. EMBO J. 1995 Feb 15;14(4):697–704. doi: 10.1002/j.1460-2075.1995.tb07048.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riezman H. Endocytosis in yeast: several of the yeast secretory mutants are defective in endocytosis. Cell. 1985 Apr;40(4):1001–1009. doi: 10.1016/0092-8674(85)90360-5. [DOI] [PubMed] [Google Scholar]
- Riezman H. Three clathrin-dependent budding steps and cell polarity. Trends Cell Biol. 1993 Oct;3(10):330–332. doi: 10.1016/0962-8924(93)90097-k. [DOI] [PubMed] [Google Scholar]
- Rodriguez-Paris J. M., Nolta K. V., Steck T. L. Characterization of lysosomes isolated from Dictyostelium discoideum by magnetic fractionation. J Biol Chem. 1993 Apr 25;268(12):9110–9116. [PubMed] [Google Scholar]
- Rosenfeld S. S., Rener B. The GPQ-rich segment of Dictyostelium myosin IB contains an actin binding site. Biochemistry. 1994 Mar 1;33(8):2322–2328. doi: 10.1021/bi00174a045. [DOI] [PubMed] [Google Scholar]
- Ruscetti T., Cardelli J. A., Niswonger M. L., O'Halloran T. J. Clathrin heavy chain functions in sorting and secretion of lysosomal enzymes in Dictyostelium discoideum. J Cell Biol. 1994 Jul;126(2):343–352. doi: 10.1083/jcb.126.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandvig K., van Deurs B. Endocytosis without clathrin. Trends Cell Biol. 1994 Aug;4(8):275–277. doi: 10.1016/0962-8924(94)90211-9. [DOI] [PubMed] [Google Scholar]
- Soll D. R., Voss E., Varnum-Finney B., Wessels D. "Dynamic Morphology System": a method for quantitating changes in shape, pseudopod formation, and motion in normal and mutant amoebae of Dictyostelium discoideum. J Cell Biochem. 1988 Jun;37(2):177–192. doi: 10.1002/jcb.240370205. [DOI] [PubMed] [Google Scholar]
- Stöffler H. E., Ruppert C., Reinhard J., Bähler M. A novel mammalian myosin I from rat with an SH3 domain localizes to Con A-inducible, F-actin-rich structures at cell-cell contacts. J Cell Biol. 1995 May;129(3):819–830. doi: 10.1083/jcb.129.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swanson J. A., Baer S. C. Phagocytosis by zippers and triggers. Trends Cell Biol. 1995 Mar;5(3):89–93. doi: 10.1016/s0962-8924(00)88956-4. [DOI] [PubMed] [Google Scholar]
- Swanson J. A., Watts C. Macropinocytosis. Trends Cell Biol. 1995 Nov;5(11):424–428. doi: 10.1016/s0962-8924(00)89101-1. [DOI] [PubMed] [Google Scholar]
- Thomas J. H. Thinking about genetic redundancy. Trends Genet. 1993 Nov;9(11):395–399. doi: 10.1016/0168-9525(93)90140-d. [DOI] [PubMed] [Google Scholar]
- Titus M. A., Kuspa A., Loomis W. F. Discovery of myosin genes by physical mapping in Dictyostelium. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9446–9450. doi: 10.1073/pnas.91.20.9446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Titus M. A., Warrick H. M., Spudich J. A. Multiple actin-based motor genes in Dictyostelium. Cell Regul. 1989 Nov;1(1):55–63. doi: 10.1091/mbc.1.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Titus M. A., Wessels D., Spudich J. A., Soll D. The unconventional myosin encoded by the myoA gene plays a role in Dictyostelium motility. Mol Biol Cell. 1993 Feb;4(2):233–246. doi: 10.1091/mbc.4.2.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Urrutia R. A., Jung G., Hammer J. A., 3rd The Dictyostelium myosin IE heavy chain gene encodes a truncated isoform that lacks sequences corresponding to the actin binding site in the tail. Biochim Biophys Acta. 1993 May 28;1173(2):225–229. doi: 10.1016/0167-4781(93)90185-g. [DOI] [PubMed] [Google Scholar]
- Varnum B., Edwards K. B., Soll D. R. The developmental regulation of single-cell motility in Dictyostelium discoideum. Dev Biol. 1986 Jan;113(1):218–227. doi: 10.1016/0012-1606(86)90124-7. [DOI] [PubMed] [Google Scholar]
- Vogel G., Thilo L., Schwarz H., Steinhart R. Mechanism of phagocytosis in Dictyostelium discoideum: phagocytosis is mediated by different recognition sites as disclosed by mutants with altered phagocytotic properties. J Cell Biol. 1980 Aug;86(2):456–465. doi: 10.1083/jcb.86.2.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wessels D., Murray J., Jung G., Hammer J. A., 3rd, Soll D. R. Myosin IB null mutants of Dictyostelium exhibit abnormalities in motility. Cell Motil Cytoskeleton. 1991;20(4):301–315. doi: 10.1002/cm.970200406. [DOI] [PubMed] [Google Scholar]
