Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1987 May;169(5):2031–2037. doi: 10.1128/jb.169.5.2031-2037.1987

Characterization of an outer membrane mannanase from Bacteroides ovatus.

F C Gherardini, A A Salyers
PMCID: PMC212081  PMID: 3553153

Abstract

Bacteroides ovatus utilizes guar gum, a high-molecular-weight branched galactomannanan, as a sole source of carbohydrate. No extracellular activity was detectable. Approximately 30% of the total cell-associated mannanase activity partitioned with cell membranes. When inner and outer membranes of B. ovatus were separated on sucrose gradients, the mannanase activity was associated mainly with fractions containing outer membranes. Enzyme activity was solubilized by 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) or by Triton X-100 at a detergent-to-protein ratio of 1:1. The enzyme was stable for only 4 h at 37 degrees C and for 50 to 60 h at 4 degrees C. Analysis of the products of the CHAPS-solubilized mannanase on Bio-Gel A-5M and Bio-Gel P-10 gel filtration columns indicated that the enzyme breaks guar gum into high-molecular-weight fragments. The CHAPS-solubilized mannanase was partially purified by chromatography on a FPLC Mono Q column. The partially purified mannanase preparation contained three major polypeptides (Mr 94,500, 61,000, and 43,000) and several minor ones. High mannanase activity was seen only when B. ovatus was grown on guar gum. Cross-absorbed antiserum detected two other guar gum-associated outer membrane proteins: a CHAPS-extractable 49,000-dalton polypeptide and a 120,000-dalton polypeptide that was not solubilized by CHAPS. Neither of these polypeptides was detectable in the partially purified mannanase preparation. These results indicate that there are at least two guar gum-associated outer membrane polypeptides other than the mannanase.

Full text

PDF
2031

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dygert S., Li L. H., Florida D., Thoma J. A. Determination of reducing sugar with improved precision. Anal Biochem. 1965 Dec;13(3):367–374. doi: 10.1016/0003-2697(65)90327-1. [DOI] [PubMed] [Google Scholar]
  2. Erickson P. F., Minier L. N., Lasher R. S. Quantitative electrophoretic transfer of polypeptides from SDS polyacrylamide gels to nitrocellulose sheets: a method for their re-use in immunoautoradiographic detection of antigens. J Immunol Methods. 1982 Jun 11;51(2):241–249. doi: 10.1016/0022-1759(82)90263-0. [DOI] [PubMed] [Google Scholar]
  3. Gherardini F. C., Salyers A. A. Purification and characterization of a cell-associated, soluble mannanase from Bacteroides ovatus. J Bacteriol. 1987 May;169(5):2038–2043. doi: 10.1128/jb.169.5.2038-2043.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gherardini F., Babcock M., Salyers A. A. Purification and characterization of two alpha-galactosidases associated with catabolism of guar gum and other alpha-galactosides by Bacteroides ovatus. J Bacteriol. 1985 Feb;161(2):500–506. doi: 10.1128/jb.161.2.500-506.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kasahara M., Anraku Y. Succinate dehydrogenase of Escherichia coli membrane vesicles. Activation and properties of the enzyme. J Biochem. 1974 Nov;76(5):959–966. [PubMed] [Google Scholar]
  6. Kotarski S. F., Salyers A. A. Isolation and characterization of outer membranes of Bacteroides thetaiotaomicron grown on different carbohydrates. J Bacteriol. 1984 Apr;158(1):102–109. doi: 10.1128/jb.158.1.102-109.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lopatin D. E., Voss E. W., Jr Anti-lysergyl antibody: measurement of binding parameters in IgG fractions. Immunochemistry. 1974 Jun;11(6):285–293. doi: 10.1016/0019-2791(74)90364-4. [DOI] [PubMed] [Google Scholar]
  8. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  9. McCarthy R. E., Kotarski S. F., Salyers A. A. Location and characteristics of enzymes involved in the breakdown of polygalacturonic acid by Bacteroides thetaiotaomicron. J Bacteriol. 1985 Feb;161(2):493–499. doi: 10.1128/jb.161.2.493-499.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  11. SCHWEIGER A. [Separation of simple sugars on cellulose lavers]. J Chromatogr. 1962 Nov;9:374–376. doi: 10.1016/s0021-9673(00)80803-1. [DOI] [PubMed] [Google Scholar]
  12. Salyers A. A. Bacteroides of the human lower intestinal tract. Annu Rev Microbiol. 1984;38:293–313. doi: 10.1146/annurev.mi.38.100184.001453. [DOI] [PubMed] [Google Scholar]
  13. Salyers A. A., Vercellotti J. R., West S. E., Wilkins T. D. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol. 1977 Feb;33(2):319–322. doi: 10.1128/aem.33.2.319-322.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Varel V. H., Bryant M. P. Nutritional features of Bacteroides fragilis subsp. fragilis. Appl Microbiol. 1974 Aug;28(2):251–257. doi: 10.1128/am.28.2.251-257.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Whitaker J. R., Granum P. E. An absolute method for protein determination based on difference in absorbance at 235 and 280 nm. Anal Biochem. 1980 Nov 15;109(1):156–159. doi: 10.1016/0003-2697(80)90024-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES