Abstract
A three-dimensional reconstruction of the eukaryotic 80S monosome from a frozen-hydrated electron microscopic preparation reveals the native structure of this macromolecular complex. The new structure, at 38A resolution, shows a marked resemblance to the structure determined for the E. coli 70S ribosome (Frank, J., A. Verschoor, Y. Li, J. Zhu, R.K. Lata, M. Radermacher, P. Penczek, R. Grassucci, R.K. Agrawal, and Srivastava. 1996b. In press; Frank, J., J. Zhu, P. Penczek, Y. Li, S. Srivastava ., A. Verschoor, M. Radermacher, R. Grassucci, R.K. Lata, and R. Agrawal. 1995. Nature (Lond.).376:441-444.) limited to a comparable resolution, but with a number of eukaryotic elaborations superimposed. Although considerably greater size and intricacy of the features is seen in the morphology of the large subunit (60S vs 50S), the most striking differences are in the small subunit morphology (40S vs 30S): the extended beak and crest features of the head, the back lobes, and the feet. However, the structure underlying these extra features appears to be remarkably similar in form to the 30S portion of the 70S structure. The intersubunit space also appears to be strongly conserved, as might be expected from the degree of functional conservation of the ribosome among kingdoms (Eukarya, Eubacteria, and Archaea). The internal organization of the 80S structure appears as an armature or core of high-density material for each subunit, with the two cores linked by a single bridge between the platform region of the 40S subunit and the region below the presumed peptidyltransferase center of the 60S subunit. This may be equated with a close contact of the 18S and 28S rRNAs in the translational domain centered on the upper subunit:subunit interface.
Full Text
The Full Text of this article is available as a PDF (5.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Azad A. A. Intermolecular base-paired interaction between complementary sequences present near the 3' ends of 5S rRNA and 18S (16S) rRNA might be involved in the reversible association of ribosomal subunits. Nucleic Acids Res. 1979 Dec 11;7(7):1913–1929. doi: 10.1093/nar/7.7.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernabeu C., Lake J. A. Nascent polypeptide chains emerge from the exit domain of the large ribosomal subunit: immune mapping of the nascent chain. Proc Natl Acad Sci U S A. 1982 May;79(10):3111–3115. doi: 10.1073/pnas.79.10.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernabeu C., Tobin E. M., Fowler A., Zabin I., Lake J. A. Nascent polypeptide chains exit the ribosome in the same relative position in both eucaryotes and procaryotes. J Cell Biol. 1983 May;96(5):1471–1474. doi: 10.1083/jcb.96.5.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brimacombe R. Structure-function correlations (and discrepancies) in the 16S ribosomal RNA from Escherichia coli. Biochimie. 1992 Apr;74(4):319–326. doi: 10.1016/0300-9084(92)90109-r. [DOI] [PubMed] [Google Scholar]
- Ciesiolka J., Nurse K., Klein J., Ofengand J. Conservation of RNA sequence and cross-linking ability in ribosomes from a higher eukaryote: photochemical cross-linking of the anticodon of P site bound tRNA to the penultimate cytidine of the UACACACG sequence in Artemia salina 18S rRNA. Biochemistry. 1985 Jun 18;24(13):3233–3239. doi: 10.1021/bi00334a024. [DOI] [PubMed] [Google Scholar]
- Dubochet J., Adrian M., Chang J. J., Homo J. C., Lepault J., McDowall A. W., Schultz P. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys. 1988 May;21(2):129–228. doi: 10.1017/s0033583500004297. [DOI] [PubMed] [Google Scholar]
- Frank J. Classification of macromolecular assemblies studied as 'single particles'. Q Rev Biophys. 1990 Aug;23(3):281–329. doi: 10.1017/s0033583500005564. [DOI] [PubMed] [Google Scholar]
- Frank J., Penczek P., Grassucci R., Srivastava S. Three-dimensional reconstruction of the 70S Escherichia coli ribosome in ice: the distribution of ribosomal RNA. J Cell Biol. 1991 Nov;115(3):597–605. doi: 10.1083/jcb.115.3.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank J., Radermacher M., Penczek P., Zhu J., Li Y., Ladjadj M., Leith A. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol. 1996 Jan-Feb;116(1):190–199. doi: 10.1006/jsbi.1996.0030. [DOI] [PubMed] [Google Scholar]
- Frank J., Radermacher M. Three-dimensional reconstruction of single particles negatively stained or in vitreous ice. Ultramicroscopy. 1992 Oct;46(1-4):241–262. doi: 10.1016/0304-3991(92)90018-f. [DOI] [PubMed] [Google Scholar]
- Frank J., Verschoor A., Boublik M. Multivariate statistical analysis of ribosome electron micrographs. L and R lateral views of the 40 S subunit from HeLa cells. J Mol Biol. 1982 Oct 15;161(1):107–133. doi: 10.1016/0022-2836(82)90281-9. [DOI] [PubMed] [Google Scholar]
- Frank J., Zhu J., Penczek P., Li Y., Srivastava S., Verschoor A., Radermacher M., Grassucci R., Lata R. K., Agrawal R. K. A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature. 1995 Aug 3;376(6539):441–444. doi: 10.1038/376441a0. [DOI] [PubMed] [Google Scholar]
- Gutell R. R. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res. 1994 Sep;22(17):3502–3507. doi: 10.1093/nar/22.17.3502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kellenberger E., Häner M., Wurtz M. The wrapping phenomenon in air-dried and negatively stained preparations. Ultramicroscopy. 1982;9(1-2):139–150. doi: 10.1016/0304-3991(82)90236-4. [DOI] [PubMed] [Google Scholar]
- Kiselev N. A., Stel'mashchuk VYa, Orlova E. V., Platzer M., Noll F., Bielka H. On the fine structure of rat liver ribosome small subunits. Mol Biol Rep. 1982 Nov 30;8(4):185–189. doi: 10.1007/BF00776578. [DOI] [PubMed] [Google Scholar]
- Konings D. A., Gutell R. R. A comparison of thermodynamic foldings with comparatively derived structures of 16S and 16S-like rRNAs. RNA. 1995 Aug;1(6):559–574. [PMC free article] [PubMed] [Google Scholar]
- Lake J. A., Clark M. W., Henderson E., Fay S. P., Oakes M., Scheinman A., Thornber J. P., Mah R. A. Eubacteria, halobacteria, and the origin of photosynthesis: the photocytes. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3716–3720. doi: 10.1073/pnas.82.11.3716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lake J. A., Henderson E., Clark M. W., Matheson A. T. Mapping evolution with ribosome structure: intralineage constancy and interlineage variation. Proc Natl Acad Sci U S A. 1982 Oct;79(19):5948–5952. doi: 10.1073/pnas.79.19.5948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lepault J., Booy F. P., Dubochet J. Electron microscopy of frozen biological suspensions. J Microsc. 1983 Jan;129(Pt 1):89–102. doi: 10.1111/j.1365-2818.1983.tb04163.x. [DOI] [PubMed] [Google Scholar]
- Lutsch G., Bielka H., Wahn K., Stahl J. Studies on the structure of aminal ribosomes. 3. Electron microscopic investigations of isolated rat liver ribosomes and their subunits. Acta Biol Med Ger. 1972;29(6):851–876. [PubMed] [Google Scholar]
- Milligan R. A., Unwin P. N. Location of exit channel for nascent protein in 80S ribosome. Nature. 1986 Feb 20;319(6055):693–695. doi: 10.1038/319693a0. [DOI] [PubMed] [Google Scholar]
- Montesano L., Glitz D. G. Wheat germ cytoplasmic ribosomes. Structure of ribosomal subunits and localization of N6,N6-dimethyladenosine by immunoelectron microscopy. J Biol Chem. 1988 Apr 5;263(10):4932–4938. [PubMed] [Google Scholar]
- Neefs J. M., Van de Peer Y., De Rijk P., Goris A., De Wachter R. Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res. 1991 Apr 25;19 (Suppl):1987–2015. doi: 10.1093/nar/19.suppl.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nonomura Y., Blobel G., Sabatini D. Structure of liver ribosomes studied by negative staining. J Mol Biol. 1971 Sep 14;60(2):303–323. doi: 10.1016/0022-2836(71)90296-8. [DOI] [PubMed] [Google Scholar]
- Nygård O., Nilsson L. Translational dynamics. Interactions between the translational factors, tRNA and ribosomes during eukaryotic protein synthesis. Eur J Biochem. 1990 Jul 20;191(1):1–17. doi: 10.1111/j.1432-1033.1990.tb19087.x. [DOI] [PubMed] [Google Scholar]
- Oakes M., Scheinman A., Rivera M., Soufer D., Shankweiler G., Lake J. Evolving ribosome structure and function: rRNA and the translation mechanism. Cold Spring Harb Symp Quant Biol. 1987;52:675–685. doi: 10.1101/sqb.1987.052.01.077. [DOI] [PubMed] [Google Scholar]
- Penczek P., Radermacher M., Frank J. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy. 1992 Jan;40(1):33–53. [PubMed] [Google Scholar]
- Radermacher M. Three-dimensional reconstruction from random projections: orientational alignment via Radon transforms. Ultramicroscopy. 1994 Feb;53(2):121–136. doi: 10.1016/0304-3991(94)90003-5. [DOI] [PubMed] [Google Scholar]
- Radermacher M., Wagenknecht T., Verschoor A., Frank J. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J Microsc. 1987 May;146(Pt 2):113–136. doi: 10.1111/j.1365-2818.1987.tb01333.x. [DOI] [PubMed] [Google Scholar]
- Ryabova L. A., Selivanova O. M., Baranov V. I., Vasiliev V. D., Spirin A. S. Does the channel for nascent peptide exist inside the ribosome? Immune electron microscopy study. FEBS Lett. 1988 Jan 4;226(2):255–260. doi: 10.1016/0014-5793(88)81434-0. [DOI] [PubMed] [Google Scholar]
- Srivastava S., Verschoor A., Frank J. Eukaryotic initiation factor 3 does not prevent association through physical blockage of the ribosomal subunit-subunit interface. J Mol Biol. 1992 Jul 20;226(2):301–304. doi: 10.1016/0022-2836(92)90946-h. [DOI] [PubMed] [Google Scholar]
- Srivastava S., Verschoor A., Radermacher M., Grassucci R., Frank J. Three-dimensional reconstruction of mammalian 40 S ribosomal subunit embedded in ice. J Mol Biol. 1995 Feb 3;245(5):461–466. doi: 10.1006/jmbi.1994.0037. [DOI] [PubMed] [Google Scholar]
- Stark H., Mueller F., Orlova E. V., Schatz M., Dube P., Erdemir T., Zemlin F., Brimacombe R., van Heel M. The 70S Escherichia coli ribosome at 23 A resolution: fitting the ribosomal RNA. Structure. 1995 Aug 15;3(8):815–821. doi: 10.1016/s0969-2126(01)00216-7. [DOI] [PubMed] [Google Scholar]
- Verschoor A., Frank J. Three-dimensional structure of the mammalian cytoplasmic ribosome. J Mol Biol. 1990 Aug 5;214(3):737–749. doi: 10.1016/0022-2836(90)90289-X. [DOI] [PubMed] [Google Scholar]
- Verschoor A., Frank J., Wagenknecht T., Boublik M. Computer-averaged views of the 70 S monosome from Escherichia coli. J Mol Biol. 1986 Feb 20;187(4):581–590. doi: 10.1016/0022-2836(86)90336-0. [DOI] [PubMed] [Google Scholar]
- Verschoor A., Zhang N. Y., Wagenknecht T., Obrig T., Radermacher M., Frank J. Three-dimensional reconstruction of mammalian 40 S ribosomal subunit. J Mol Biol. 1989 Sep 5;209(1):115–126. doi: 10.1016/0022-2836(89)90175-7. [DOI] [PubMed] [Google Scholar]
- Wagenknecht T., Grassucci R., Frank J. Electron microscopy and computer image averaging of ice-embedded large ribosomal subunits from Escherichia coli. J Mol Biol. 1988 Jan 5;199(1):137–147. doi: 10.1016/0022-2836(88)90384-1. [DOI] [PubMed] [Google Scholar]