Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 May 1;133(3):571–583. doi: 10.1083/jcb.133.3.571

Three-dimensional structure of the Z band in a normal mammalian skeletal muscle

PMCID: PMC2120817  PMID: 8636232

Abstract

The three-dimensional structure of the vertebrate skeletal muscle Z band reflects its function as the muscle component essential for tension transmission between successive sarcomeres. We have investigated this structure as well as that of the nearby I band in a normal, unstimulated mammalian skeletal muscle by tomographic three- dimensional reconstruction from electron micrograph tilt series of sectioned tissue. The three-dimensional Z band structure consists of interdigitating axial filaments from opposite sarcomeres connected every 18 +/- 12 nm (mean +/- SD) to one to four cross-connecting Z- filaments are observed to meet the axial filaments in a fourfold symmetric arrangement. The substantial variation in the spacing between cross-connecting Z-filament to axial filament connection points suggests that the structure of the Z band is not determined solely by the arrangement of alpha-actinin to actin-binding sites along the axial filament. The cross-connecting filaments bind to or form a "relaxed interconnecting body" halfway between the axial filaments. This filamentous body is parallel to the Z band axial filaments and is observed to play an essential role in generating the small square lattice pattern seen in electron micrographs of unstimulated muscle cross sections. This structure is absent in cross section of the Z band from muscles fixed in rigor or in tetanus, suggesting that the Z band lattice must undergo dynamic rearrangement concomitant with crossbridge binding in the A band.

Full Text

The Full Text of this article is available as a PDF (5.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashhurst D. E. Z-line of the flight muscle of belostomatid water bugs. J Mol Biol. 1967 Jul 28;27(2):385–389. doi: 10.1016/0022-2836(67)90027-7. [DOI] [PubMed] [Google Scholar]
  2. Bretaudiere J. P., Tapon-Bretaudiere J., Stoops J. K. Structure of native alpha 2-macroglobulin and its transformation to the protease bound form. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1437–1441. doi: 10.1073/pnas.85.5.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cheng N. Q., Deatherage J. F. Three-dimensional reconstruction of the Z disk of sectioned bee flight muscle. J Cell Biol. 1989 May;108(5):1761–1774. doi: 10.1083/jcb.108.5.1761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davey D. F. The relation between Z--disk lattice spacing and sarcomere length in sartorius muscle fibres from Hyla cerulea. Aust J Exp Biol Med Sci. 1976 Oct;54(5):441–447. doi: 10.1038/icb.1976.44. [DOI] [PubMed] [Google Scholar]
  5. Deatherage J. F., Cheng N. Q., Bullard B. Arrangement of filaments and cross-links in the bee flight muscle Z disk by image analysis of oblique sections. J Cell Biol. 1989 May;108(5):1775–1782. doi: 10.1083/jcb.108.5.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elliott G. F., Lowy J., Millman B. M. Low-angle x-ray diffraction studies of living striated muscle during contraction. J Mol Biol. 1967 Apr 14;25(1):31–45. doi: 10.1016/0022-2836(67)90277-x. [DOI] [PubMed] [Google Scholar]
  7. Fardeau M. Ultrastructure des fibres muculaires squelettiques (I) Presse Med. 1969 Sep 24;77(39):1341–1344. [PubMed] [Google Scholar]
  8. Frank J., Verschoor A., Boublik M. Computer averaging of electron micrographs of 40S ribosomal subunits. Science. 1981 Dec 18;214(4527):1353–1355. doi: 10.1126/science.7313694. [DOI] [PubMed] [Google Scholar]
  9. Franzini-Armstrong C. The structure of a simple Z line. J Cell Biol. 1973 Sep;58(3):630–642. doi: 10.1083/jcb.58.3.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fürst D. O., Osborn M., Nave R., Weber K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol. 1988 May;106(5):1563–1572. doi: 10.1083/jcb.106.5.1563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldstein M. A., Michael L. H., Schroeter J. P., Sass R. L. The Z-band lattice in skeletal muscle before, during and after tetanic contraction. J Muscle Res Cell Motil. 1986 Dec;7(6):527–536. doi: 10.1007/BF01753569. [DOI] [PubMed] [Google Scholar]
  12. Goldstein M. A., Michael L. H., Schroeter J. P., Sass R. L. Z band dynamics as a function of sarcomere length and the contractile state of muscle. FASEB J. 1987 Aug;1(2):133–142. doi: 10.1096/fasebj.1.2.3609610. [DOI] [PubMed] [Google Scholar]
  13. Goldstein M. A., Schroeter J. P., Sass R. L. Optical diffraction of the Z lattice in canine cardiac muscle. J Cell Biol. 1977 Dec;75(3):818–836. doi: 10.1083/jcb.75.3.818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldstein M. A., Schroeter J. P., Sass R. L. The Z-band lattice in a slow skeletal muscle. J Muscle Res Cell Motil. 1982 Sep;3(3):333–348. doi: 10.1007/BF00713041. [DOI] [PubMed] [Google Scholar]
  15. Goldstein M. A., Schroeter J. P., Sass R. L. Two structural states of the vertebrate Z band. Electron Microsc Rev. 1990;3(2):227–248. doi: 10.1016/0892-0354(90)90003-b. [DOI] [PubMed] [Google Scholar]
  16. Goldstein M. A., Stromer M. H., Schroeter J. P., Sass R. L. Optical reconstruction of nemaline rods. Exp Neurol. 1980 Oct;70(1):83–97. doi: 10.1016/0014-4886(80)90007-2. [DOI] [PubMed] [Google Scholar]
  17. Goll D. E., Dayton W. R., Singh I., Robson R. M. Studies of the alpha-actinin/actin interaction in the Z-disk by using calpain. J Biol Chem. 1991 May 5;266(13):8501–8510. [PubMed] [Google Scholar]
  18. Harford J., Luther P., Squire J. Equatorial A-band and I-band X-ray diffraction from relaxed and active fish muscle. Further details of myosin crossbridge behaviour. J Mol Biol. 1994 Jun 17;239(4):500–512. doi: 10.1006/jmbi.1994.1391. [DOI] [PubMed] [Google Scholar]
  19. Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
  20. Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
  21. Irving T. C., Millman B. M. Z-line/I-band and A-band lattices of intact frog sartorius muscle at altered interfilament spacing. J Muscle Res Cell Motil. 1992 Feb;13(1):100–105. doi: 10.1007/BF01738433. [DOI] [PubMed] [Google Scholar]
  22. KNAPPEIS G. G., CARLSEN F. The ultrastructure of the Z disc in skeletal muscle. J Cell Biol. 1962 May;13:323–335. doi: 10.1083/jcb.13.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kelly D. E., Cahill M. A. Filamentous and matrix components of skeletal muscle Z-disks. Anat Rec. 1972 Apr;172(4):623–642. doi: 10.1002/ar.1091720403. [DOI] [PubMed] [Google Scholar]
  24. Kelly D. E. Models of muscle Z-band fine structure based on a looping filament configuration. J Cell Biol. 1967 Sep;34(3):827–840. doi: 10.1083/jcb.34.3.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Landon D. N. The influence of fixation upon the fine structure of the Z-disk of rat striated muscle. J Cell Sci. 1970 Jan;6(1):257–276. doi: 10.1242/jcs.6.1.257. [DOI] [PubMed] [Google Scholar]
  26. Luther P. K. Three-dimensional reconstruction of a simple Z-band in fish muscle. J Cell Biol. 1991 Jun;113(5):1043–1055. doi: 10.1083/jcb.113.5.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McGough A., Way M., DeRosier D. Determination of the alpha-actinin-binding site on actin filaments by cryoelectron microscopy and image analysis. J Cell Biol. 1994 Jul;126(2):433–443. doi: 10.1083/jcb.126.2.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Morris E. P., Nneji G., Squire J. M. The three-dimensional structure of the nemaline rod Z-band. J Cell Biol. 1990 Dec;111(6 Pt 2):2961–2978. doi: 10.1083/jcb.111.6.2961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Penczek P. A., Grassucci R. A., Frank J. The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy. 1994 Mar;53(3):251–270. doi: 10.1016/0304-3991(94)90038-8. [DOI] [PubMed] [Google Scholar]
  30. Radermacher M. Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J Electron Microsc Tech. 1988 Aug;9(4):359–394. doi: 10.1002/jemt.1060090405. [DOI] [PubMed] [Google Scholar]
  31. Radermacher M., Wagenknecht T., Verschoor A., Frank J. Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J Microsc. 1987 May;146(Pt 2):113–136. doi: 10.1111/j.1365-2818.1987.tb01333.x. [DOI] [PubMed] [Google Scholar]
  32. Reddy M. K., Etlinger J. D., Rabinowitz M., Fischman D. A., Zak R. Removal of Z-lines and alpha-actinin from isolated myofibrils by a calcium-activated neutral protease. J Biol Chem. 1975 Jun 10;250(11):4278–4284. [PubMed] [Google Scholar]
  33. Rowe R. W. The ultrastructure of Z disks from white, intermediate, and red fibers of mammalian striated muscles. J Cell Biol. 1973 May;57(2):261–277. doi: 10.1083/jcb.57.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schmalbruch H., Lewis D. M. A comparison of the morphology of denervated with aneurally regenerated soleus muscle of rat. J Muscle Res Cell Motil. 1994 Jun;15(3):256–266. doi: 10.1007/BF00123478. [DOI] [PubMed] [Google Scholar]
  35. Schroeter J. P., Bretaudiere J. P., Goldstein M. A. Similar features in Z bands of both skeletal and cardiac muscle revealed by image enhancement. J Electron Microsc Tech. 1991 Jul;18(3):296–304. doi: 10.1002/jemt.1060180312. [DOI] [PubMed] [Google Scholar]
  36. Schroeter J. P., Bretaudiere J. P. SUPRIM: easily modified image processing software. J Struct Biol. 1996 Jan-Feb;116(1):131–137. doi: 10.1006/jsbi.1996.0021. [DOI] [PubMed] [Google Scholar]
  37. Suzuki A., Goll D. E., Singh I., Allen R. E., Robson R. M., Stromer M. H. Some properties of purified skeletal muscle alpha-actinin. J Biol Chem. 1976 Nov 10;251(21):6860–6870. [PubMed] [Google Scholar]
  38. Takahashi K., Hattori A. Alpha-actinin is a component of the Z-filament, a structural backbone of skeletal muscle Z-disks. J Biochem. 1989 Apr;105(4):529–536. doi: 10.1093/oxfordjournals.jbchem.a122701. [DOI] [PubMed] [Google Scholar]
  39. Tidball J. G., Salem G., Zernicke R. Site and mechanical conditions for failure of skeletal muscle in experimental strain injuries. J Appl Physiol (1985) 1993 Mar;74(3):1280–1286. doi: 10.1152/jappl.1993.74.3.1280. [DOI] [PubMed] [Google Scholar]
  40. Tokuyasu K. T., Dutton A. H., Geiger B., Singer S. J. Ultrastructure of chicken cardiac muscle as studied by double immunolabeling in electron microscopy. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7619–7623. doi: 10.1073/pnas.78.12.7619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Trombitás K., Baatsen P. H., Pollack G. H. I-bands of striated muscle contain lateral struts. J Ultrastruct Mol Struct Res. 1988 Jul;100(1):13–30. doi: 10.1016/0889-1605(88)90055-9. [DOI] [PubMed] [Google Scholar]
  42. Tskhovrebova L. A. Vertebrate muscle Z-line structure: an electron microscopic study of negatively-stained myofibrils. J Muscle Res Cell Motil. 1991 Oct;12(5):425–438. doi: 10.1007/BF01738327. [DOI] [PubMed] [Google Scholar]
  43. Ullrick W. C., Toselli P. A., Saide J. D., Phear W. P. Fine structure of the vertebrate Z-disc. J Mol Biol. 1977 Sep;115(1):61–74. doi: 10.1016/0022-2836(77)90246-7. [DOI] [PubMed] [Google Scholar]
  44. Wang K., Ramirez-Mitchell R. A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle. J Cell Biol. 1983 Feb;96(2):562–570. doi: 10.1083/jcb.96.2.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Yamaguchi M., Izumimoto M., Robson R. M., Stromer M. H. Fine structure of wide and narrow vertebrate muscle Z-lines. A proposed model and computer simulation of Z-line architecture. J Mol Biol. 1985 Aug 20;184(4):621–643. doi: 10.1016/0022-2836(85)90308-0. [DOI] [PubMed] [Google Scholar]
  46. Yamaguchi M., Robson R. M., Stromer M. H., Cholvin N. R., Izumimoto M. Properties of soleus muscle Z-lines and induced Z-line analogs revealed by dissection with Ca2+-activated neutral protease. Anat Rec. 1983 Aug;206(4):345–362. doi: 10.1002/ar.1092060402. [DOI] [PubMed] [Google Scholar]
  47. Yamaguchi M., Robson R. M., Stromer M. H. Evidence for actin involvement in cardiac Z-lines and Z-line analogues. J Cell Biol. 1983 Feb;96(2):435–442. doi: 10.1083/jcb.96.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yu L. C., Lymn R. W., Podolsky R. J. Characterization of a non-indexible equatorial x-ray reflection from frog sartorius muscle. J Mol Biol. 1977 Sep 25;115(3):455–464. doi: 10.1016/0022-2836(77)90165-6. [DOI] [PubMed] [Google Scholar]
  49. Zimmer D. B., Goldstein M. A. DNase I interactions with filaments of skeletal muscles. J Muscle Res Cell Motil. 1987 Feb;8(1):30–38. doi: 10.1007/BF01767262. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES