Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 May 1;133(3):683–693. doi: 10.1083/jcb.133.3.683

Insulin-like growth factor binding protein-5 modulates muscle differentiation through an insulin-like growth factor-dependent mechanism

PMCID: PMC2120822  PMID: 8636241

Abstract

The insulin-like growth factor binding proteins (IGFBPs) are a family of six secreted proteins which bind to and modulate the actions of insulin-like growth factors-I and -II (IGF-I and -II). IGFBP-5 is more conserved than other IGFBPs characterized to date, and is expressed in adult rodent muscle and in the developing myotome. We have shown previously that C2 myoblasts secrete IGFBP-5 as their sole IGFBP. Here we use these cells to study the function of IGFBP-5 during myogenesis, a process stimulated by IGFs. We stably transfected C2 cells with IGFBP- 5 cDNAs under control of a constitutively active promoter. Compared with vector-transfected control cells, C2 myoblasts expressing the IGFBP-5 transgene in the sense orientation exhibit increased IGFBP-5 levels in the extracellular matrix during proliferation, and subsequently fail to differentiate normally, as assessed by both morphological and biochemical criteria. Compared to controls, IGFBP-5 sense myoblasts show enhanced survival in low serum medium, remaining viable for at least four weeks in culture. By contrast, myoblasts expressing the IGFBP-5 antisense transcript differentiate prematurely and more extensively than control cells. The inhibition of myogenic differentiation by high level expression of IGFBP-5 could be overcome by exogenous IGFs, with des (1-3) IGF-I, an analogue with decreased affinity for IGFBP-5 but normal affinity for the IGF-I receptor, showing the highest potency. These results are consistent with a model in which IGFBP-5 blocks IGF-stimulated myogenesis, and indicate that sequestration of IGFs in the extracellular matrix could be a possible mechanism of action. Our observations also suggest that IGFBP-5 normally inhibits muscle differentiation, and imply a role for IGFBP-5 in regulating IGF action during myogenic development in vivo.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Annweiler A., Hipskind R. A., Wirth T. A strategy for efficient in vitro translation of cDNAs using the rabbit beta-globin leader sequence. Nucleic Acids Res. 1991 Jul 11;19(13):3750–3750. doi: 10.1093/nar/19.13.3750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bach L. A., Hsieh S., Brown A. L., Rechler M. M. Recombinant human insulin-like growth factor (IGF)-binding protein-6 inhibits IGF-II-induced differentiation of L6A1 myoblasts. Endocrinology. 1994 Nov;135(5):2168–2176. doi: 10.1210/endo.135.5.7525263. [DOI] [PubMed] [Google Scholar]
  3. Braun T., Buschhausen-Denker G., Bober E., Tannich E., Arnold H. H. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 1989 Mar;8(3):701–709. doi: 10.1002/j.1460-2075.1989.tb03429.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Camacho-Hubner C., Busby W. H., Jr, McCusker R. H., Wright G., Clemmons D. R. Identification of the forms of insulin-like growth factor-binding proteins produced by human fibroblasts and the mechanisms that regulate their secretion. J Biol Chem. 1992 Jun 15;267(17):11949–11956. [PubMed] [Google Scholar]
  5. Chen C. A., Okayama H. Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques. 1988 Jul-Aug;6(7):632–638. [PubMed] [Google Scholar]
  6. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. Davis R. L., Weintraub H., Lassar A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 Dec 24;51(6):987–1000. doi: 10.1016/0092-8674(87)90585-x. [DOI] [PubMed] [Google Scholar]
  9. Edmondson D. G., Olson E. N. A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev. 1990 Aug;4(8):1450–1450. doi: 10.1101/gad.4.8.1450. [DOI] [PubMed] [Google Scholar]
  10. Edmondson D. G., Olson E. N. Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem. 1993 Jan 15;268(2):755–758. [PubMed] [Google Scholar]
  11. Ewton D. Z., Florini J. R. IGF binding proteins-4, -5 and -6 may play specialized roles during L6 myoblast proliferation and differentiation. J Endocrinol. 1995 Mar;144(3):539–553. doi: 10.1677/joe.0.1440539. [DOI] [PubMed] [Google Scholar]
  12. Florini J. R., Ewton D. Z. Highly specific inhibition of IGF-I-stimulated differentiation by an antisense oligodeoxyribonucleotide to myogenin mRNA. No effects on other actions of IGF-T. J Biol Chem. 1990 Aug 15;265(23):13435–13437. [PubMed] [Google Scholar]
  13. Florini J. R., Ewton D. Z., Roof S. L. Insulin-like growth factor-I stimulates terminal myogenic differentiation by induction of myogenin gene expression. Mol Endocrinol. 1991 May;5(5):718–724. doi: 10.1210/mend-5-5-718. [DOI] [PubMed] [Google Scholar]
  14. Florini J. R., Magri K. A. Effects of growth factors on myogenic differentiation. Am J Physiol. 1989 Apr;256(4 Pt 1):C701–C711. doi: 10.1152/ajpcell.1989.256.4.C701. [DOI] [PubMed] [Google Scholar]
  15. Florini J. R., Magri K. A., Ewton D. Z., James P. L., Grindstaff K., Rotwein P. S. "Spontaneous" differentiation of skeletal myoblasts is dependent upon autocrine secretion of insulin-like growth factor-II. J Biol Chem. 1991 Aug 25;266(24):15917–15923. [PubMed] [Google Scholar]
  16. González-Sánchez A., Bader D. Immunochemical analysis of myosin heavy chains in the developing chicken heart. Dev Biol. 1984 May;103(1):151–158. doi: 10.1016/0012-1606(84)90016-2. [DOI] [PubMed] [Google Scholar]
  17. Green B. N., Jones S. B., Streck R. D., Wood T. L., Rotwein P., Pintar J. E. Distinct expression patterns of insulin-like growth factor binding proteins 2 and 5 during fetal and postnatal development. Endocrinology. 1994 Feb;134(2):954–962. doi: 10.1210/endo.134.2.7507840. [DOI] [PubMed] [Google Scholar]
  18. Hossenlopp P., Seurin D., Segovia-Quinson B., Binoux M. Identification of an insulin-like growth factor-binding protein in human cerebrospinal fluid with a selective affinity for IGF-II. FEBS Lett. 1986 Nov 24;208(2):439–444. doi: 10.1016/0014-5793(86)81065-1. [DOI] [PubMed] [Google Scholar]
  19. James P. L., Jones S. B., Busby W. H., Jr, Clemmons D. R., Rotwein P. A highly conserved insulin-like growth factor-binding protein (IGFBP-5) is expressed during myoblast differentiation. J Biol Chem. 1993 Oct 25;268(30):22305–22312. [PubMed] [Google Scholar]
  20. Jones J. I., Clemmons D. R. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 1995 Feb;16(1):3–34. doi: 10.1210/edrv-16-1-3. [DOI] [PubMed] [Google Scholar]
  21. Jones J. I., D'Ercole A. J., Camacho-Hubner C., Clemmons D. R. Phosphorylation of insulin-like growth factor (IGF)-binding protein 1 in cell culture and in vivo: effects on affinity for IGF-I. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7481–7485. doi: 10.1073/pnas.88.17.7481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jones J. I., Gockerman A., Busby W. H., Jr, Camacho-Hubner C., Clemmons D. R. Extracellular matrix contains insulin-like growth factor binding protein-5: potentiation of the effects of IGF-I. J Cell Biol. 1993 May;121(3):679–687. doi: 10.1083/jcb.121.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Knudsen B. S., Harpel P. C., Nachman R. L. Plasminogen activator inhibitor is associated with the extracellular matrix of cultured bovine smooth muscle cells. J Clin Invest. 1987 Oct;80(4):1082–1089. doi: 10.1172/JCI113164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lassar A. B., Skapek S. X., Novitch B. Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr Opin Cell Biol. 1994 Dec;6(6):788–794. doi: 10.1016/0955-0674(94)90046-9. [DOI] [PubMed] [Google Scholar]
  25. Liu J. P., Baker J., Perkins A. S., Robertson E. J., Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 1993 Oct 8;75(1):59–72. [PubMed] [Google Scholar]
  26. Mangiacapra F. J., Roof S. L., Ewton D. Z., Florini J. R. Paradoxical decrease in myf-5 messenger RNA levels during induction of myogenic differentiation by insulin-like growth factors. Mol Endocrinol. 1992 Dec;6(12):2038–2044. doi: 10.1210/mend.6.12.1337140. [DOI] [PubMed] [Google Scholar]
  27. McCusker R. H., Clemmons D. R. Insulin-like growth factor binding protein secretion by muscle cells: effect of cellular differentiation and proliferation. J Cell Physiol. 1988 Dec;137(3):505–512. doi: 10.1002/jcp.1041370316. [DOI] [PubMed] [Google Scholar]
  28. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nam T. J., Busby W. H., Jr, Clemmons D. R. Human fibroblasts secrete a serine protease that cleaves insulin-like growth factor-binding protein-5. Endocrinology. 1994 Oct;135(4):1385–1391. doi: 10.1210/endo.135.4.7523096. [DOI] [PubMed] [Google Scholar]
  30. Olson E. N. Signal transduction pathways that regulate skeletal muscle gene expression. Mol Endocrinol. 1993 Nov;7(11):1369–1378. doi: 10.1210/mend.7.11.8114752. [DOI] [PubMed] [Google Scholar]
  31. Reeve J. G., Guadaño A., Xiong J., Morgan J., Bleehen N. M. Diminished expression of insulin-like growth factor (IGF) binding protein-5 and activation of IGF-I-mediated autocrine growth in simian virus 40-transformed human fibroblasts. J Biol Chem. 1995 Jan 6;270(1):135–142. doi: 10.1074/jbc.270.1.135. [DOI] [PubMed] [Google Scholar]
  32. Rosenthal S. M., Cheng Z. Q. Opposing early and late effects of insulin-like growth factor I on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10307–10311. doi: 10.1073/pnas.92.22.10307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rotwein P., Burgess S. K., Milbrandt J. D., Krause J. E. Differential expression of insulin-like growth factor genes in rat central nervous system. Proc Natl Acad Sci U S A. 1988 Jan;85(1):265–269. doi: 10.1073/pnas.85.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rotwein P., James P. L., Kou K. Rapid activation of insulin-like growth factor binding protein-5 gene transcription during myoblast differentiation. Mol Endocrinol. 1995 Jul;9(7):913–923. doi: 10.1210/mend.9.7.7476973. [DOI] [PubMed] [Google Scholar]
  35. Silverman L. A., Cheng Z. Q., Hsiao D., Rosenthal S. M. Skeletal muscle cell-derived insulin-like growth factor (IGF) binding proteins inhibit IGF-I-induced myogenesis in rat L6E9 cells. Endocrinology. 1995 Feb;136(2):720–726. doi: 10.1210/endo.136.2.7530651. [DOI] [PubMed] [Google Scholar]
  36. Tollefsen S. E., Lajara R., McCusker R. H., Clemmons D. R., Rotwein P. Insulin-like growth factors (IGF) in muscle development. Expression of IGF-I, the IGF-I receptor, and an IGF binding protein during myoblast differentiation. J Biol Chem. 1989 Aug 15;264(23):13810–13817. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES