Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 May 2;133(4):801–807. doi: 10.1083/jcb.133.4.801

Oligomeric and subunit structure of the Helicobacter pylori vacuolating cytotoxin

PMCID: PMC2120837  PMID: 8666665

Abstract

Disease-associated strains of Helicobacter pylori produce a potent toxin that is believed to play a key role in peptic ulcer disease in man. In vitro the toxin causes severe vacuolar degeneration in target cells and has thus been termed VacA (for vacuolating cytotoxin A). Cytotoxic activity is associated with a > 600-kD protein consisting of several copies of a 95-kD polypeptide that undergoes specific proteolytic cleavage after release from the bacteria to produce 37- and 58-kD fragments. Quick freeze, deep etch electron microscopy has revealed that the native cytotoxin is formed as regular oligomers with either six- or seven-fold radial symmetry. Within each monomer, two domains can clearly be distinguished, suggesting that the 37- and 58-kD fragments derive from proteolytic cleavage between discrete subunits of the monomer. Analysis of preparations of the toxin that had undergone extensive cleavage into the 37- and 58-kD subunits supports this interpretation and reveals that after cleavage the subunits remain associated in the oligomeric structure. The data suggest a structural similarity with AB-type toxins.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballard J., Sokolov Y., Yuan W. L., Kagan B. L., Tweten R. K. Activation and mechanism of Clostridium septicum alpha toxin. Mol Microbiol. 1993 Nov;10(3):627–634. doi: 10.1111/j.1365-2958.1993.tb00934.x. [DOI] [PubMed] [Google Scholar]
  2. Bellon P. L., Lanzavecchia S. POLCA, a library running in a modern environment, implements a protocol for averaging randomly oriented images. Comput Appl Biosci. 1990 Jul;6(3):271–277. doi: 10.1093/bioinformatics/6.3.271. [DOI] [PubMed] [Google Scholar]
  3. Bhakdi S., Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol Rev. 1991 Dec;55(4):733–751. doi: 10.1128/mr.55.4.733-751.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhakdi S., Tranum-Jensen J., Sziegoleit A. Mechanism of membrane damage by streptolysin-O. Infect Immun. 1985 Jan;47(1):52–60. doi: 10.1128/iai.47.1.52-60.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cover T. L., Blaser M. J. Helicobacter pylori and gastroduodenal disease. Annu Rev Med. 1992;43:135–145. doi: 10.1146/annurev.me.43.020192.001031. [DOI] [PubMed] [Google Scholar]
  6. Cover T. L., Blaser M. J. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J Biol Chem. 1992 May 25;267(15):10570–10575. [PubMed] [Google Scholar]
  7. Cover T. L., Tummuru M. K., Cao P., Thompson S. A., Blaser M. J. Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J Biol Chem. 1994 Apr 8;269(14):10566–10573. [PubMed] [Google Scholar]
  8. Eriksen S., Olsnes S., Sandvig K., Sand O. Diphtheria toxin at low pH depolarizes the membrane, increases the membrane conductance and induces a new type of ion channel in Vero cells. EMBO J. 1994 Oct 3;13(19):4433–4439. doi: 10.1002/j.1460-2075.1994.tb06765.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harris R. W., Sims P. J., Tweten R. K. Kinetic aspects of the aggregation of Clostridium perfringens theta-toxin on erythrocyte membranes. A fluorescence energy transfer study. J Biol Chem. 1991 Apr 15;266(11):6936–6941. [PubMed] [Google Scholar]
  10. Heuser J. E. Procedure for freeze-drying molecules adsorbed to mica flakes. J Mol Biol. 1983 Sep 5;169(1):155–195. doi: 10.1016/s0022-2836(83)80179-x. [DOI] [PubMed] [Google Scholar]
  11. Heuser J. Protocol for 3-D visualization of molecules on mica via the quick-freeze, deep-etch technique. J Electron Microsc Tech. 1989 Nov;13(3):244–263. doi: 10.1002/jemt.1060130310. [DOI] [PubMed] [Google Scholar]
  12. Hoch D. H., Romero-Mira M., Ehrlich B. E., Finkelstein A., DasGupta B. R., Simpson L. L. Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1692–1696. doi: 10.1073/pnas.82.6.1692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Manetti R., Massari P., Burroni D., de Bernard M., Marchini A., Olivieri R., Papini E., Montecucco C., Rappuoli R., Telford J. L. Helicobacter pylori cytotoxin: importance of native conformation for induction of neutralizing antibodies. Infect Immun. 1995 Nov;63(11):4476–4480. doi: 10.1128/iai.63.11.4476-4480.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marchetti M., Aricò B., Burroni D., Figura N., Rappuoli R., Ghiara P. Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science. 1995 Mar 17;267(5204):1655–1658. doi: 10.1126/science.7886456. [DOI] [PubMed] [Google Scholar]
  15. Mekalanos J. J., Collier R. J., Romig W. R. Enzymic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition. J Biol Chem. 1979 Jul 10;254(13):5855–5861. [PubMed] [Google Scholar]
  16. Milne J. C., Furlong D., Hanna P. C., Wall J. S., Collier R. J. Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J Biol Chem. 1994 Aug 12;269(32):20607–20612. [PubMed] [Google Scholar]
  17. Moll G., Papini E., Colonna R., Burroni D., Telford J., Rappuoli R., Montecucco C. Lipid interaction of the 37-kDa and 58-kDa fragments of the Helicobacter pylori cytotoxin. Eur J Biochem. 1995 Dec 15;234(3):947–952. doi: 10.1111/j.1432-1033.1995.947_a.x. [DOI] [PubMed] [Google Scholar]
  18. Papini E., de Bernard M., Milia E., Bugnoli M., Zerial M., Rappuoli R., Montecucco C. Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9720–9724. doi: 10.1073/pnas.91.21.9720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Parsonnet J. Helicobacter pylori and gastric cancer. Gastroenterol Clin North Am. 1993 Mar;22(1):89–104. [PubMed] [Google Scholar]
  20. Rappuoli R. Toxin inactivation and antigen stabilization: two different uses of formaldehyde. Vaccine. 1994 May;12(7):579–581. doi: 10.1016/0264-410x(94)90259-3. [DOI] [PubMed] [Google Scholar]
  21. Schmitt W., Haas R. Genetic analysis of the Helicobacter pylori vacuolating cytotoxin: structural similarities with the IgA protease type of exported protein. Mol Microbiol. 1994 Apr;12(2):307–319. doi: 10.1111/j.1365-2958.1994.tb01019.x. [DOI] [PubMed] [Google Scholar]
  22. Sekiya K., Satoh R., Danbara H., Futaesaku Y. A ring-shaped structure with a crown formed by streptolysin O on the erythrocyte membrane. J Bacteriol. 1993 Sep;175(18):5953–5961. doi: 10.1128/jb.175.18.5953-5961.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Telford J. L., Covacci A., Ghiara P., Montecucco C., Rappuoli R. Unravelling the pathogenic role of Helicobacter pylori in peptic ulcer: potential new therapies and vaccines. Trends Biotechnol. 1994 Oct;12(10):420–426. doi: 10.1016/0167-7799(94)90031-0. [DOI] [PubMed] [Google Scholar]
  24. Telford J. L., Ghiara P., Dell'Orco M., Comanducci M., Burroni D., Bugnoli M., Tecce M. F., Censini S., Covacci A., Xiang Z. Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. J Exp Med. 1994 May 1;179(5):1653–1658. doi: 10.1084/jem.179.5.1653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Xiang Z., Censini S., Bayeli P. F., Telford J. L., Figura N., Rappuoli R., Covacci A. Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. Infect Immun. 1995 Jan;63(1):94–98. doi: 10.1128/iai.63.1.94-98.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zerial M., Stenmark H. Rab GTPases in vesicular transport. Curr Opin Cell Biol. 1993 Aug;5(4):613–620. doi: 10.1016/0955-0674(93)90130-i. [DOI] [PubMed] [Google Scholar]
  27. de Bernard M., Papini E., de Filippis V., Gottardi E., Telford J., Manetti R., Fontana A., Rappuoli R., Montecucco C. Low pH activates the vacuolating toxin of Helicobacter pylori, which becomes acid and pepsin resistant. J Biol Chem. 1995 Oct 13;270(41):23937–23940. doi: 10.1074/jbc.270.41.23937. [DOI] [PubMed] [Google Scholar]
  28. van der Goot F. G., Lakey J., Pattus F., Kay C. M., Sorokine O., Van Dorsselaer A., Buckley J. T. Spectroscopic study of the activation and oligomerization of the channel-forming toxin aerolysin: identification of the site of proteolytic activation. Biochemistry. 1992 Sep 15;31(36):8566–8570. doi: 10.1021/bi00151a026. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES