Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 May 2;133(4):809–817. doi: 10.1083/jcb.133.4.809

The sea urchin sperm receptor for egg jelly is a modular protein with extensive homology to the human polycystic kidney disease protein, PKD1

PMCID: PMC2120838  PMID: 8666666

Abstract

During fertilization, the sea urchin sperm acrosome reaction (AR), an ion channel-regulated event, is triggered by glycoproteins in egg jelly (EJ). A 210-kD sperm membrane glycoprotein is the receptor for EJ (REJ). This conclusion is based on the following data: purified REJ binds species specifically to EJ dotted onto nitrocellulose, an mAb to REJ induces the sperm AR, antibody induction is blocked by purified REJ, and purified REJ absorbs the AR-inducing activity of EJ. Overlapping fragments of REJ cDNA were cloned (total length, 5,596 bp). The sequence was confirmed by microsequencing six peptides of mature REJ and by Western blotting with antibody to a synthetic peptide designed from the sequence. Complete deglycosylation of REJ followed by Western blotting yielded a size estimate in agreement with that of the mature amino acid sequence. REJ is modular in design; it contains one EGF module and two C-type lectin carbohydrate-recognition modules. Most importantly, it contains a novel module, herein named the REJ module (700 residues), which shares extensive homology with the human polycystic kidney disease protein (PKD1). Mutations in PKD1 cause autosomal dominant polycystic kidney disease, one of the most frequent genetic disease of humans. The lesion in cellular physiology resulting from mutations in the PKD1 protein remains unknown. The homology between REJ modules of the sea urchin REJ and human PKD1 suggests that PKD1 could be involved in ionic regulation.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Aziz N. Animal models of polycystic kidney disease. Bioessays. 1995 Aug;17(8):703–712. doi: 10.1002/bies.950170807. [DOI] [PubMed] [Google Scholar]
  3. Calvet J. P. Polycystic kidney disease: primary extracellular matrix abnormality or defective cellular differentiation? Kidney Int. 1993 Jan;43(1):101–108. doi: 10.1038/ki.1993.17. [DOI] [PubMed] [Google Scholar]
  4. Carone F. A., Bacallao R., Kanwar Y. S. Biology of polycystic kidney disease. Lab Invest. 1994 Apr;70(4):437–448. [PubMed] [Google Scholar]
  5. Doolittle R. F., Bork P. Evolutionarily mobile modules in proteins. Sci Am. 1993 Oct;269(4):50–56. doi: 10.1038/scientificamerican1093-50. [DOI] [PubMed] [Google Scholar]
  6. Feng D. F., Doolittle R. F. Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol. 1990;183:375–387. doi: 10.1016/0076-6879(90)83025-5. [DOI] [PubMed] [Google Scholar]
  7. Gabow P. A. Autosomal dominant polycystic kidney disease. N Engl J Med. 1993 Jul 29;329(5):332–342. doi: 10.1056/NEJM199307293290508. [DOI] [PubMed] [Google Scholar]
  8. Garbers D. L. Molecular basis of fertilization. Annu Rev Biochem. 1989;58:719–742. doi: 10.1146/annurev.bi.58.070189.003443. [DOI] [PubMed] [Google Scholar]
  9. Gatti J. L., Christen R. Regulation of internal pH of sea urchin sperm. A role for the Na/K pump. J Biol Chem. 1985 Jun 25;260(12):7599–7602. [PubMed] [Google Scholar]
  10. Grantham J. J. Polycystic kidney disease: neoplasia in disguise. Am J Kidney Dis. 1990 Feb;15(2):110–116. doi: 10.1016/s0272-6386(12)80507-5. [DOI] [PubMed] [Google Scholar]
  11. Grantham J. J., Ye M., Gattone V. H., 2nd, Sullivan L. P. In vitro fluid secretion by epithelium from polycystic kidneys. J Clin Invest. 1995 Jan;95(1):195–202. doi: 10.1172/JCI117638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gribskov M., Lüthy R., Eisenberg D. Profile analysis. Methods Enzymol. 1990;183:146–159. doi: 10.1016/0076-6879(90)83011-w. [DOI] [PubMed] [Google Scholar]
  13. Guarena C., Boero R., Quarello F., Berto I., Muraca R., Roux V., Iadarola G., Piccoli G. Altérations du transport érythrocytaire du sodium chez les patients atteints de polykystose rénale de l'adulte et hypertension artérielle. Arch Mal Coeur Vaiss. 1993 Aug;86(8):1241–1243. [PubMed] [Google Scholar]
  14. Hughes J., Ward C. J., Peral B., Aspinwall R., Clark K., San Millán J. L., Gamble V., Harris P. C. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet. 1995 Jun;10(2):151–160. doi: 10.1038/ng0695-151. [DOI] [PubMed] [Google Scholar]
  15. Keller S. H., Vacquier V. D. The isolation of acrosome-reaction-inducing glycoproteins from sea urchin egg jelly. Dev Biol. 1994 Mar;162(1):304–312. doi: 10.1006/dbio.1994.1087. [DOI] [PubMed] [Google Scholar]
  16. Kozak M. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol. 1987 Aug 20;196(4):947–950. doi: 10.1016/0022-2836(87)90418-9. [DOI] [PubMed] [Google Scholar]
  17. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lee H. C. A membrane potential-sensitive Na+-H+ exchange system in flagella isolated from sea urchin spermatozoa. J Biol Chem. 1984 Dec 25;259(24):15315–15319. [PubMed] [Google Scholar]
  20. Longo F. J., Georgiou C., Cook S. Membrane specializations associated with the acrosomal complex of sea urchin sperm as revealed by immunocytochemistry and freeze fracture replication. Gamete Res. 1989 Aug;23(4):429–440. doi: 10.1002/mrd.1120230408. [DOI] [PubMed] [Google Scholar]
  21. Mendoza L. M., Nishioka D., Vacquier V. D. A GPI-anchored sea urchin sperm membrane protein containing EGF domains is related to human uromodulin. J Cell Biol. 1993 Jun;121(6):1291–1297. doi: 10.1083/jcb.121.6.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nishioka D., Trimmer J. S., Poccia D., Vacquier V. D. Changing localizations of site-specific surface antigens during sea urchin spermiogenesis. Exp Cell Res. 1987 Dec;173(2):606–616. doi: 10.1016/0014-4827(87)90299-0. [DOI] [PubMed] [Google Scholar]
  23. Ogborn M. R. Polycystic kidney disease--a truly pediatric problem. Pediatr Nephrol. 1994 Dec;8(6):762–767. doi: 10.1007/BF00869116. [DOI] [PubMed] [Google Scholar]
  24. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pearson W. R. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 1990;183:63–98. doi: 10.1016/0076-6879(90)83007-v. [DOI] [PubMed] [Google Scholar]
  26. Podell S. B., Moy G. W., Vacquier V. D. Isolation and characterization of a plasma membrane fraction from sea urchin sperm exhibiting species specific recognition of the egg surface. Biochim Biophys Acta. 1984 Nov 21;778(1):25–37. doi: 10.1016/0005-2736(84)90444-9. [DOI] [PubMed] [Google Scholar]
  27. Podell S. B., Vacquier V. D. Purification of the Mr 80,000 and Mr 210,000 proteins of the sea urchin sperm plasma membrane. Evidence that the Mr 210,000 protein interacts with egg jelly. J Biol Chem. 1985 Mar 10;260(5):2715–2718. [PubMed] [Google Scholar]
  28. Podell S. B., Vacquier V. D. Wheat germ agglutinin blocks the acrosome reaction in Strongylocentrotus purpuratus sperm by binding a 210,000-mol-wt membrane protein. J Cell Biol. 1984 Nov;99(5):1598–1604. doi: 10.1083/jcb.99.5.1598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rao Z., Handford P., Mayhew M., Knott V., Brownlee G. G., Stuart D. The structure of a Ca(2+)-binding epidermal growth factor-like domain: its role in protein-protein interactions. Cell. 1995 Jul 14;82(1):131–141. doi: 10.1016/0092-8674(95)90059-4. [DOI] [PubMed] [Google Scholar]
  30. Sipos L., von Heijne G. Predicting the topology of eukaryotic membrane proteins. Eur J Biochem. 1993 May 1;213(3):1333–1340. doi: 10.1111/j.1432-1033.1993.tb17885.x. [DOI] [PubMed] [Google Scholar]
  31. Smith D. W. A complete, yet flexible, system for DNA/protein sequence analysis using VAX/VMS computers. Comput Appl Biosci. 1988 Mar;4(1):212–212. doi: 10.1093/bioinformatics/4.1.212. [DOI] [PubMed] [Google Scholar]
  32. Suzuki N. Structure, function and biosynthesis of sperm-activating peptides and fucose sulfate glycoconjugate in the extracellular coat of sea urchin eggs. Zoolog Sci. 1995 Feb;12(1):13–27. doi: 10.2108/zsj.12.13. [DOI] [PubMed] [Google Scholar]
  33. Taylor M. E., Conary J. T., Lennartz M. R., Stahl P. D., Drickamer K. Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. J Biol Chem. 1990 Jul 25;265(21):12156–12162. [PubMed] [Google Scholar]
  34. Trimmer J. S., Schackmann R. W., Vacquier V. D. Monoclonal antibodies increase intracellular Ca2+ in sea urchin spermatozoa. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9055–9059. doi: 10.1073/pnas.83.23.9055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Trimmer J. S., Trowbridge I. S., Vacquier V. D. Monoclonal antibody to a membrane glycoprotein inhibits the acrosome reaction and associated Ca2+ and H+ fluxes of sea urchin sperm. Cell. 1985 Mar;40(3):697–703. doi: 10.1016/0092-8674(85)90218-1. [DOI] [PubMed] [Google Scholar]
  36. Vacquier V. D. Handling, labeling, and fractionating sea urchin spermatozoa. Methods Cell Biol. 1986;27:15–40. doi: 10.1016/s0091-679x(08)60340-4. [DOI] [PubMed] [Google Scholar]
  37. Vacquier V. D., Moy G. W., Trimmer J. S., Ebina Y., Porter D. C. Monoclonal antibodies to a membrane glycoprotein induce the phosphorylation of histone H1 in sea urchin spermatozoa. J Cell Biol. 1988 Dec;107(6 Pt 1):2021–2027. doi: 10.1083/jcb.107.6.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vacquier V. D., Tegner M. J., Epel D. Protease released from sea urchin eggs at fertilization alters the vitelline layer and aids in preventing polyspermy. Exp Cell Res. 1973 Jul;80(1):111–119. doi: 10.1016/0014-4827(73)90281-4. [DOI] [PubMed] [Google Scholar]
  39. Woo D. D., Miao S. Y., Pelayo J. C., Woolf A. S. Taxol inhibits progression of congenital polycystic kidney disease. Nature. 1994 Apr 21;368(6473):750–753. doi: 10.1038/368750a0. [DOI] [PubMed] [Google Scholar]
  40. Woolf A. S., Winyard P. J. Unravelling the pathogenesis of cystic kidney diseases. Arch Dis Child. 1995 Feb;72(2):103–105. doi: 10.1136/adc.72.2.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. von Heijne G. The signal peptide. J Membr Biol. 1990 May;115(3):195–201. doi: 10.1007/BF01868635. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES