Abstract
Members of the FGF family of growth factors localize to the nuclei in a variety of different cell types. To determine whether FGF receptors are also present within nuclei and if this localization is regulated by FGFs, nuclei were prepared from quiescent and FGF-2-treated Swiss 3T3 fibroblasts and examined for the presence of FGF receptors by immunoblotting with an antibody produced against the extracellular domain of FGF receptor-1 (FGFR-1). Little or no FGFR-1 is detected in nuclei prepared from quiescent cells. When cells are treated with FGF- 2, however, there is a time- and dose-dependent increase in the association of FGFR-1 immunoreactivity with the nucleus. In contrast, treatment with either EGF or 10% serum does not increase the association of FGFR-1 with the nucleus. When cell surface proteins are labeled with biotin, a biotinylated FGFR-1 is detected in the nuclear fraction prepared from FGF-2-treated, but not untreated, cells indicating that the nuclear-associated FGFR-1 immunoreactivity derives from the cell surface. The presence of FGFR-1 in the nuclei of FGF-2- treated cells was confirmed by immunostaining with a panel of different FGFR-1 antibodies, including one directed against the COOH-terminal domain of the protein. Fractionation of nuclei from FGF-2-treated cells indicates that nuclear FGFR-1 is localized to the nuclear matrix, suggesting that the receptor may play a role in regulating gene activity.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baldin V., Roman A. M., Bosc-Bierne I., Amalric F., Bouche G. Translocation of bFGF to the nucleus is G1 phase cell cycle specific in bovine aortic endothelial cells. EMBO J. 1990 May;9(5):1511–1517. doi: 10.1002/j.1460-2075.1990.tb08269.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgess W. H., Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem. 1989;58:575–606. doi: 10.1146/annurev.bi.58.070189.003043. [DOI] [PubMed] [Google Scholar]
- Cole S. R., Ashman L. K., Ey P. L. Biotinylation: an alternative to radioiodination for the identification of cell surface antigens in immunoprecipitates. Mol Immunol. 1987 Jul;24(7):699–705. doi: 10.1016/0161-5890(87)90051-4. [DOI] [PubMed] [Google Scholar]
- Curtis B. M., Widmer M. B., deRoos P., Qwarnstrom E. E. IL-1 and its receptor are translocated to the nucleus. J Immunol. 1990 Feb 15;144(4):1295–1303. [PubMed] [Google Scholar]
- Dingwall C., Laskey R. A. Nuclear targeting sequences--a consensus? Trends Biochem Sci. 1991 Dec;16(12):478–481. doi: 10.1016/0968-0004(91)90184-w. [DOI] [PubMed] [Google Scholar]
- Dworetzky S. I., Fey E. G., Penman S., Lian J. B., Stein J. L., Stein G. S. Progressive changes in the protein composition of the nuclear matrix during rat osteoblast differentiation. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4605–4609. doi: 10.1073/pnas.87.12.4605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fernig D. G., Gallagher J. T. Fibroblast growth factors and their receptors: an information network controlling tissue growth, morphogenesis and repair. Prog Growth Factor Res. 1994;5(4):353–377. doi: 10.1016/0955-2235(94)00007-8. [DOI] [PubMed] [Google Scholar]
- Fey E. G., Krochmalnic G., Penman S. The nonchromatin substructures of the nucleus: the ribonucleoprotein (RNP)-containing and RNP-depleted matrices analyzed by sequential fractionation and resinless section electron microscopy. J Cell Biol. 1986 May;102(5):1654–1665. doi: 10.1083/jcb.102.5.1654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fey E. G., Penman S. Nuclear matrix proteins reflect cell type of origin in cultured human cells. Proc Natl Acad Sci U S A. 1988 Jan;85(1):121–125. doi: 10.1073/pnas.85.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Florkiewicz R. Z., Baird A., Gonzalez A. M. Multiple forms of bFGF: differential nuclear and cell surface localization. Growth Factors. 1991;4(4):265–275. doi: 10.3109/08977199109043912. [DOI] [PubMed] [Google Scholar]
- Friesel R., Maciag T. Internalization and degradation of heparin binding growth factor-I by endothelial cells. Biochem Biophys Res Commun. 1988 Mar 30;151(3):957–964. doi: 10.1016/s0006-291x(88)80459-5. [DOI] [PubMed] [Google Scholar]
- Givol D., Yayon A. Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. FASEB J. 1992 Dec;6(15):3362–3369. [PubMed] [Google Scholar]
- Hanneken A., Maher P. A., Baird A. High affinity immunoreactive FGF receptors in the extracellular matrix of vascular endothelial cells--implications for the modulation of FGF-2. J Cell Biol. 1995 Mar;128(6):1221–1228. doi: 10.1083/jcb.128.6.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holt S. J., Alexander P., Inman C. B., Davies D. E. Epidermal growth factor induced tyrosine phosphorylation of nuclear proteins associated with translocation of epidermal growth factor receptor into the nucleus. Biochem Pharmacol. 1994 Jan 13;47(1):117–126. doi: 10.1016/0006-2952(94)90444-8. [DOI] [PubMed] [Google Scholar]
- Hopkins C. R. Internalization of polypeptide growth factor receptors and the regulation of transcription. Biochem Pharmacol. 1994 Jan 13;47(1):151–154. doi: 10.1016/0006-2952(94)90449-9. [DOI] [PubMed] [Google Scholar]
- Hurley W. L., Finkelstein E., Holst B. D. Identification of surface proteins on bovine leukocytes by a biotin-avidin protein blotting technique. J Immunol Methods. 1985 Dec 17;85(1):195–202. doi: 10.1016/0022-1759(85)90287-x. [DOI] [PubMed] [Google Scholar]
- Jiang L. W., Schindler M. Nucleocytoplasmic transport is enhanced concomitant with nuclear accumulation of epidermal growth factor (EGF) binding activity in both 3T3-1 and EGF receptor reconstituted NR-6 fibroblasts. J Cell Biol. 1990 Mar;110(3):559–568. doi: 10.1083/jcb.110.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson D. E., Williams L. T. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res. 1993;60:1–41. doi: 10.1016/s0065-230x(08)60821-0. [DOI] [PubMed] [Google Scholar]
- Johnston C. L., Cox H. C., Gomm J. J., Coombes R. C. Fibroblast growth factor receptors (FGFRs) localize in different cellular compartments. A splice variant of FGFR-3 localizes to the nucleus. J Biol Chem. 1995 Dec 22;270(51):30643–30650. doi: 10.1074/jbc.270.51.30643. [DOI] [PubMed] [Google Scholar]
- Kiefer M. C., Baird A., Nguyen T., George-Nascimento C., Mason O. B., Boley L. J., Valenzuela P., Barr P. J. Molecular cloning of a human basic fibroblast growth factor receptor cDNA and expression of a biologically active extracellular domain in a baculovirus system. Growth Factors. 1991;5(2):115–127. doi: 10.3109/08977199109000276. [DOI] [PubMed] [Google Scholar]
- Lobie P. E., Wood T. J., Chen C. M., Waters M. J., Norstedt G. Nuclear translocation and anchorage of the growth hormone receptor. J Biol Chem. 1994 Dec 16;269(50):31735–31746. [PubMed] [Google Scholar]
- Maher P. A. Inhibition of the tyrosine kinase activity of the fibroblast growth factor receptor by the methyltransferase inhibitor 5'-methylthioadenosine. J Biol Chem. 1993 Feb 25;268(6):4244–4249. [PubMed] [Google Scholar]
- Maher P. A. Tissue-dependent regulation of protein tyrosine kinase activity during embryonic development. J Cell Biol. 1991 Mar;112(5):955–963. doi: 10.1083/jcb.112.5.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marti U., Burwen S. J., Wells A., Barker M. E., Huling S., Feren A. M., Jones A. L. Localization of epidermal growth factor receptor in hepatocyte nuclei. Hepatology. 1991 Jan;13(1):15–20. [PubMed] [Google Scholar]
- Moenner M., Gannoun-Zaki L., Badet J., Barritault D. Internalization and limited processing of basic fibroblast growth factor on Chinese hamster lung fibroblasts. Growth Factors. 1989;1(2):115–123. doi: 10.3109/08977198909029121. [DOI] [PubMed] [Google Scholar]
- Partanen J., Vainikka S., Alitalo K. Structural and functional specificity of FGF receptors. Philos Trans R Soc Lond B Biol Sci. 1993 Jun 29;340(1293):297–303. doi: 10.1098/rstb.1993.0071. [DOI] [PubMed] [Google Scholar]
- Pasquale E. B., Maher P. A., Singer S. J. Comparative study of the tyrosine phosphorylation of proteins in Swiss 3T3 fibroblasts stimulated by a variety of mitogenic agents. J Cell Physiol. 1988 Oct;137(1):146–156. doi: 10.1002/jcp.1041370118. [DOI] [PubMed] [Google Scholar]
- Payrastre B., Nievers M., Boonstra J., Breton M., Verkleij A. J., Van Bergen en Henegouwen P. M. A differential location of phosphoinositide kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. J Biol Chem. 1992 Mar 15;267(8):5078–5084. [PubMed] [Google Scholar]
- Podlecki D. A., Smith R. M., Kao M., Tsai P., Huecksteadt T., Brandenburg D., Lasher R. S., Jarett L., Olefsky J. M. Nuclear translocation of the insulin receptor. A possible mediator of insulin's long term effects. J Biol Chem. 1987 Mar 5;262(7):3362–3368. [PubMed] [Google Scholar]
- Presta M., Tiberio L., Rusnati M., Dell'Era P., Ragnotti G. Basic fibroblast growth factor requires a long-lasting activation of protein kinase C to induce cell proliferation in transformed fetal bovine aortic endothelial cells. Cell Regul. 1991 Sep;2(9):719–726. doi: 10.1091/mbc.2.9.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Prudovsky I., Savion N., Zhan X., Friesel R., Xu J., Hou J., McKeehan W. L., Maciag T. Intact and functional fibroblast growth factor (FGF) receptor-1 trafficks near the nucleus in response to FGF-1. J Biol Chem. 1994 Dec 16;269(50):31720–31724. [PubMed] [Google Scholar]
- Rakowicz-Szulczynska E. M., Otwiaska D., Rodeck U., Koprowski H. Epidermal growth factor (EGF) and monoclonal antibody to cell surface EGF receptor bind to the same chromatin receptor. Arch Biochem Biophys. 1989 Feb 1;268(2):456–464. doi: 10.1016/0003-9861(89)90313-5. [DOI] [PubMed] [Google Scholar]
- Renko M., Quarto N., Morimoto T., Rifkin D. B. Nuclear and cytoplasmic localization of different basic fibroblast growth factor species. J Cell Physiol. 1990 Jul;144(1):108–114. doi: 10.1002/jcp.1041440114. [DOI] [PubMed] [Google Scholar]
- Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silver P. A. How proteins enter the nucleus. Cell. 1991 Feb 8;64(3):489–497. doi: 10.1016/0092-8674(91)90233-o. [DOI] [PubMed] [Google Scholar]
- Stuurman N., Meijne A. M., van der Pol A. J., de Jong L., van Driel R., van Renswoude J. The nuclear matrix from cells of different origin. Evidence for a common set of matrix proteins. J Biol Chem. 1990 Apr 5;265(10):5460–5465. [PubMed] [Google Scholar]
- Tessler S., Neufeld G. Basic fibroblast growth factor accumulates in the nuclei of various bFGF-producing cell types. J Cell Physiol. 1990 Nov;145(2):310–317. doi: 10.1002/jcp.1041450216. [DOI] [PubMed] [Google Scholar]
- Wagner J. A. The fibroblast growth factors: an emerging family of neural growth factors. Curr Top Microbiol Immunol. 1991;165:95–118. doi: 10.1007/978-3-642-75747-1_6. [DOI] [PubMed] [Google Scholar]
- Walicke P. A., Baird A. Internalization and processing of basic fibroblast growth factor by neurons and astrocytes. J Neurosci. 1991 Jul;11(7):2249–2258. doi: 10.1523/JNEUROSCI.11-07-02249.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiedłocha A., Falnes P. O., Madshus I. H., Sandvig K., Olsnes S. Dual mode of signal transduction by externally added acidic fibroblast growth factor. Cell. 1994 Mar 25;76(6):1039–1051. doi: 10.1016/0092-8674(94)90381-6. [DOI] [PubMed] [Google Scholar]
- Xie Y., Hung M. C. Nuclear localization of p185neu tyrosine kinase and its association with transcriptional transactivation. Biochem Biophys Res Commun. 1994 Sep 30;203(3):1589–1598. doi: 10.1006/bbrc.1994.2368. [DOI] [PubMed] [Google Scholar]
- Zhan X., Hu X., Friedman S., Maciag T. Analysis of endogenous and exogenous nuclear translocation of fibroblast growth factor-1 in NIH 3T3 cells. Biochem Biophys Res Commun. 1992 Nov 16;188(3):982–991. doi: 10.1016/0006-291x(92)91328-n. [DOI] [PubMed] [Google Scholar]
- Zhan X., Hu X., Friesel R., Maciag T. Long term growth factor exposure and differential tyrosine phosphorylation are required for DNA synthesis in BALB/c 3T3 cells. J Biol Chem. 1993 May 5;268(13):9611–9620. [PubMed] [Google Scholar]