Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Jul 2;134(2):537–548. doi: 10.1083/jcb.134.2.537

eat-5 and unc-7 represent a multigene family in Caenorhabditis elegans involved in cell-cell coupling

PMCID: PMC2120886  PMID: 8707836

Abstract

The Drosophila melanogaster genes Passover and l(1)ogre and the Caenorhabditis elegans gene unc-7 define a gene family whose function is not known. We have isolated and characterized the C. elegans gene eat-5, which is required for synchronized pharyngeal muscle contractions, and find that it is a new member of this family. Simultaneous electrical and video recordings reveal that in eat-5 mutants, action potentials of muscles in the anterior and posterior pharynx are unsynchronized. Injection of carboxyfluorescein into muscles of the posterior pharynx demonstrates that all pharyngeal muscles are dye-coupled in wild-type animals; in eat-5 mutants, however, muscles of the anterior pharynx are no longer dye-coupled to posterior pharyngeal muscles. We show that a gene fusion of eat-5 to the green fluorescent protein is expressed in pharyngeal muscles. unc-7 and eat-5 are two of at least sixteen members of this family in C. elegans as determined by database searches and PCR-based screens. The amino acid sequences of five of these members in C. elegans have been deduced from cDNA sequences. Polypeptides of the family are predicted to have four transmembrane domains with cytoplasmic amino and carboxyl termini. We have constructed fusions of one of these polypeptides with beta-galactosidase and with green fluorescent protein. The fusion proteins appear to be localized in a punctate pattern at or near plasma membranes. We speculate that this gene family is required for the formation of gap junctions.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertson D. G. Mapping muscle protein genes by in situ hybridization using biotin-labeled probes. EMBO J. 1985 Oct;4(10):2493–2498. doi: 10.1002/j.1460-2075.1985.tb03961.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albertson D. G., Thomson J. N. The pharynx of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1976 Aug 10;275(938):299–325. doi: 10.1098/rstb.1976.0085. [DOI] [PubMed] [Google Scholar]
  3. Avery L., Horvitz H. R. Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron. 1989 Oct;3(4):473–485. doi: 10.1016/0896-6273(89)90206-7. [DOI] [PubMed] [Google Scholar]
  4. Avery L. The genetics of feeding in Caenorhabditis elegans. Genetics. 1993 Apr;133(4):897–917. doi: 10.1093/genetics/133.4.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baird D. H., Koto M., Wyman R. J. Dendritic reduction in Passover, a Drosophila mutant with a defective giant fiber neuronal pathway. J Neurobiol. 1993 Jul;24(7):971–984. doi: 10.1002/neu.480240710. [DOI] [PubMed] [Google Scholar]
  6. Barnes T. M. OPUS: a growing family of gap junction proteins? Trends Genet. 1994 Sep;10(9):303–305. doi: 10.1016/0168-9525(94)90023-x. [DOI] [PubMed] [Google Scholar]
  7. Bennett M. V., Barrio L. C., Bargiello T. A., Spray D. C., Hertzberg E., Sáez J. C. Gap junctions: new tools, new answers, new questions. Neuron. 1991 Mar;6(3):305–320. doi: 10.1016/0896-6273(91)90241-q. [DOI] [PubMed] [Google Scholar]
  8. Bossinger O., Schierenberg E. Cell-cell communication in the embryo of Caenorhabditis elegans. Dev Biol. 1992 Jun;151(2):401–409. doi: 10.1016/0012-1606(92)90180-o. [DOI] [PubMed] [Google Scholar]
  9. Chalfie M., Tu Y., Euskirchen G., Ward W. W., Prasher D. C. Green fluorescent protein as a marker for gene expression. Science. 1994 Feb 11;263(5148):802–805. doi: 10.1126/science.8303295. [DOI] [PubMed] [Google Scholar]
  10. Coulson A., Sulston J., Brenner S., Karn J. Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7821–7825. doi: 10.1073/pnas.83.20.7821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Coulson A., Waterston R., Kiff J., Sulston J., Kohara Y. Genome linking with yeast artificial chromosomes. Nature. 1988 Sep 8;335(6186):184–186. doi: 10.1038/335184a0. [DOI] [PubMed] [Google Scholar]
  12. Crompton D., Todman M., Wilkin M., Ji S., Davies J. Essential and neural transcripts from the Drosophila shaking-B locus are differentially expressed in the embryonic mesoderm and pupal nervous system. Dev Biol. 1995 Jul;170(1):142–158. doi: 10.1006/dbio.1995.1203. [DOI] [PubMed] [Google Scholar]
  13. Davis M. W., Somerville D., Lee R. Y., Lockery S., Avery L., Fambrough D. M. Mutations in the Caenorhabditis elegans Na,K-ATPase alpha-subunit gene, eat-6, disrupt excitable cell function. J Neurosci. 1995 Dec;15(12):8408–8418. doi: 10.1523/JNEUROSCI.15-12-08408.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Flower N. E. A new junctional structure in the epithelia of insects of the order Dictyoptera. J Cell Sci. 1972 May;10(3):683–691. doi: 10.1242/jcs.10.3.683. [DOI] [PubMed] [Google Scholar]
  15. Jones D. T., Taylor W. R., Thornton J. M. A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry. 1994 Mar 15;33(10):3038–3049. doi: 10.1021/bi00176a037. [DOI] [PubMed] [Google Scholar]
  16. Jongen W. M., Fitzgerald D. J., Asamoto M., Piccoli C., Slaga T. J., Gros D., Takeichi M., Yamasaki H. Regulation of connexin 43-mediated gap junctional intercellular communication by Ca2+ in mouse epidermal cells is controlled by E-cadherin. J Cell Biol. 1991 Aug;114(3):545–555. doi: 10.1083/jcb.114.3.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Keane R. W., Mehta P. P., Rose B., Honig L. S., Loewenstein W. R., Rutishauser U. Neural differentiation, NCAM-mediated adhesion, and gap junctional communication in neuroectoderm. A study in vitro. J Cell Biol. 1988 Apr;106(4):1307–1319. doi: 10.1083/jcb.106.4.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kramer J. M., French R. P., Park E. C., Johnson J. J. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol Cell Biol. 1990 May;10(5):2081–2089. doi: 10.1128/mcb.10.5.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Krause M., Hirsh D. A trans-spliced leader sequence on actin mRNA in C. elegans. Cell. 1987 Jun 19;49(6):753–761. doi: 10.1016/0092-8674(87)90613-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Krishnan S. N., Frei E., Schalet A. P., Wyman R. J. Molecular basis of intracistronic complementation in the Passover locus of Drosophila. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2021–2025. doi: 10.1073/pnas.92.6.2021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Krishnan S. N., Frei E., Swain G. P., Wyman R. J. Passover: a gene required for synaptic connectivity in the giant fiber system of Drosophila. Cell. 1993 Jun 4;73(5):967–977. doi: 10.1016/0092-8674(93)90274-t. [DOI] [PubMed] [Google Scholar]
  22. Kumar N. M., Gilula N. B. Molecular biology and genetics of gap junction channels. Semin Cell Biol. 1992 Feb;3(1):3–16. doi: 10.1016/s1043-4682(10)80003-0. [DOI] [PubMed] [Google Scholar]
  23. Lipshitz H. D., Kankel D. R. Specificity of gene action during central nervous system development in Drosophila melanogaster: analysis of the lethal (1) optic ganglion reduced locus. Dev Biol. 1985 Mar;108(1):56–77. doi: 10.1016/0012-1606(85)90009-0. [DOI] [PubMed] [Google Scholar]
  24. Marchuk D., Drumm M., Saulino A., Collins F. S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res. 1991 Mar 11;19(5):1154–1154. doi: 10.1093/nar/19.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Maruyama I. N., Brenner S. A phorbol ester/diacylglycerol-binding protein encoded by the unc-13 gene of Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5729–5733. doi: 10.1073/pnas.88.13.5729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McCombie W. R., Adams M. D., Kelley J. M., FitzGerald M. G., Utterback T. R., Khan M., Dubnick M., Kerlavage A. R., Venter J. C., Fields C. Caenorhabditis elegans expressed sequence tags identify gene families and potential disease gene homologues. Nat Genet. 1992 May;1(2):124–131. doi: 10.1038/ng0592-124. [DOI] [PubMed] [Google Scholar]
  27. Mege R. M., Matsuzaki F., Gallin W. J., Goldberg J. I., Cunningham B. A., Edelman G. M. Construction of epithelioid sheets by transfection of mouse sarcoma cells with cDNAs for chicken cell adhesion molecules. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7274–7278. doi: 10.1073/pnas.85.19.7274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mello C. C., Kramer J. M., Stinchcomb D., Ambros V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 1991 Dec;10(12):3959–3970. doi: 10.1002/j.1460-2075.1991.tb04966.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Meyer R. A., Laird D. W., Revel J. P., Johnson R. G. Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J Cell Biol. 1992 Oct;119(1):179–189. doi: 10.1083/jcb.119.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Miller D. M., Stockdale F. E., Karn J. Immunological identification of the genes encoding the four myosin heavy chain isoforms of Caenorhabditis elegans. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2305–2309. doi: 10.1073/pnas.83.8.2305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Raizen D. M., Avery L. Electrical activity and behavior in the pharynx of Caenorhabditis elegans. Neuron. 1994 Mar;12(3):483–495. doi: 10.1016/0896-6273(94)90207-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schwarzmann G., Wiegandt H., Rose B., Zimmerman A., Ben-Haim D., Loewenstein W. R. Diameter of the cell-to-cell junctional membrane channels as probed with neutral molecules. Science. 1981 Jul 31;213(4507):551–553. doi: 10.1126/science.7244653. [DOI] [PubMed] [Google Scholar]
  33. Starich T. A., Herman R. K., Shaw J. E. Molecular and genetic analysis of unc-7, a Caenorhabditis elegans gene required for coordinated locomotion. Genetics. 1993 Mar;133(3):527–541. doi: 10.1093/genetics/133.3.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stauffer K. A., Unwin N. Structure of gap junction channels. Semin Cell Biol. 1992 Feb;3(1):17–20. doi: 10.1016/s1043-4682(10)80004-2. [DOI] [PubMed] [Google Scholar]
  35. Swenson K. I., Jordan J. R., Beyer E. C., Paul D. L. Formation of gap junctions by expression of connexins in Xenopus oocyte pairs. Cell. 1989 Apr 7;57(1):145–155. doi: 10.1016/0092-8674(89)90180-3. [DOI] [PubMed] [Google Scholar]
  36. Thomas J. B., Wyman R. J. Mutations altering synaptic connectivity between identified neurons in Drosophila. J Neurosci. 1984 Feb;4(2):530–538. doi: 10.1523/JNEUROSCI.04-02-00530.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Watanabe T., Kankel D. R. Molecular cloning and analysis of l(1)ogre, a locus of Drosophila melanogaster with prominent effects on the postembryonic development of the central nervous system. Genetics. 1990 Dec;126(4):1033–1044. doi: 10.1093/genetics/126.4.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Watanabe T., Kankel D. R. The l(1)ogre gene of Drosophila melanogaster is expressed in postembryonic neuroblasts. Dev Biol. 1992 Jul;152(1):172–183. doi: 10.1016/0012-1606(92)90167-f. [DOI] [PubMed] [Google Scholar]
  39. Waterston R., Ainscough R., Anderson K., Berks M., Blair D., Connell M., Cooper J., Coulson A., Craxton M., Dear S. The genome of the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol. 1993;58:367–376. doi: 10.1101/sqb.1993.058.01.043. [DOI] [PubMed] [Google Scholar]
  40. Waterston R., Martin C., Craxton M., Huynh C., Coulson A., Hillier L., Durbin R., Green P., Shownkeen R., Halloran N. A survey of expressed genes in Caenorhabditis elegans. Nat Genet. 1992 May;1(2):114–123. doi: 10.1038/ng0592-114. [DOI] [PubMed] [Google Scholar]
  41. Werner R., Miller T., Azarnia R., Dahl G. Translation and functional expression of cell-cell channel mRNA in Xenopus oocytes. J Membr Biol. 1985;87(3):253–268. doi: 10.1007/BF01871226. [DOI] [PubMed] [Google Scholar]
  42. White T. W., Bruzzone R., Wolfram S., Paul D. L., Goodenough D. A. Selective interactions among the multiple connexin proteins expressed in the vertebrate lens: the second extracellular domain is a determinant of compatibility between connexins. J Cell Biol. 1994 May;125(4):879–892. doi: 10.1083/jcb.125.4.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zhu D., Caveney S., Kidder G. M., Naus C. C. Transfection of C6 glioma cells with connexin 43 cDNA: analysis of expression, intercellular coupling, and cell proliferation. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1883–1887. doi: 10.1073/pnas.88.5.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zimmerman A. L., Rose B. Permeability properties of cell-to-cell channels: kinetics of fluorescent tracer diffusion through a cell junction. J Membr Biol. 1985;84(3):269–283. doi: 10.1007/BF01871390. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES