Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Jul 2;134(2):499–509. doi: 10.1083/jcb.134.2.499

Activity-induced internalization and rapid degradation of sodium channels in cultured fetal neurons

PMCID: PMC2120887  PMID: 8707833

Abstract

A regulatory mechanism for neuronal excitability consists in controlling sodium channel density at the plasma membrane. In cultured fetal neurons, activation of sodium channels by neurotoxins, e.g., veratridine and alpha-scorpion toxin (alpha-ScTx) that enhance the channel open state probability induced a rapid down-regulation of surface channels. Evidence that the initial step of activity-induced sodium channel down-regulation is mediated by internalization was provided by using 125I-alpha-ScTx as both a channel probe and activator. After its binding to surface channels, the distribution of 125I-alpha-ScTx into five subcellular compartments was quantitatively analyzed by EM autoradiography. 125I-alpha-ScTx was found to accumulate in tubulovesicular endosomes and disappear from the cell surface in a time-dependent manner. This specific distribution was prevented by addition of tetrodotoxin (TTX), a channel blocker. By using a photoreactive derivative to covalently label sodium channels at the surface of cultured neurons, we further demonstrated that they are degraded after veratridine-induced internalization. A time-dependent decrease in the amount of labeled sodium channel alpha subunit was observed after veratridine treatment. After 120 min of incubation, half of the alpha subunits were cleaved. This degradation was prevented totally by TTX addition and was accompanied by the appearance of an increasing amount of a 90-kD major proteolytic fragment that was already detected after 45-60 min of veratridine treatment. Exposure of the photoaffinity-labeled cells to amphotericin B, a sodium ionophore, gave similar results. In this case, degradation was prevented when Na+ ions were substituted by choline ions and not blocked by TTX. After veratridine- or amphotericin B-induced internalization of sodium channels, breakdown of the labeled alpha subunit was inhibited by leupeptin, while internalization was almost unaffected. Thus, cultured fetal neurons are capable of adjusting sodium channel density by an activity-dependent endocytotic process that is triggered by Na+ influx.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckh S., Noda M., Lübbert H., Numa S. Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J. 1989 Dec 1;8(12):3611–3616. doi: 10.1002/j.1460-2075.1989.tb08534.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boudier J. A., Berwald-Netter Y., Dellmann H. D., Boudier J. L., Couraud F., Koulakoff A., Cau P. Ultrastructural visualization of Na+-channel associated [125I]alpha-scorpion toxin binding sites on fetal mouse nerve cells in culture. Brain Res. 1985 May;352(1):137–142. doi: 10.1016/0165-3806(85)90097-5. [DOI] [PubMed] [Google Scholar]
  3. Boudier J. L., Le Treut T., Jover E. Autoradiographic localization of voltage-dependent sodium channels on the mouse neuromuscular junction using 125I-alpha scorpion toxin. II. Sodium distribution on postsynaptic membranes. J Neurosci. 1992 Feb;12(2):454–466. doi: 10.1523/JNEUROSCI.12-02-00454.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brysch W., Creutzfeldt O. D., Lüno K., Schlingensiepen R., Schlingensiepen K. H. Regional and temporal expression of sodium channel messenger RNAs in the rat brain during development. Exp Brain Res. 1991;86(3):562–567. doi: 10.1007/BF00230529. [DOI] [PubMed] [Google Scholar]
  5. Catterall W. A. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol. 1980;20:15–43. doi: 10.1146/annurev.pa.20.040180.000311. [DOI] [PubMed] [Google Scholar]
  6. Dargent B., Couraud F. Down-regulation of voltage-dependent sodium channels initiated by sodium influx in developing neurons. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5907–5911. doi: 10.1073/pnas.87.15.5907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dargent B., Jullien F., Couraud F. Internalization of voltage-dependent sodium channels in fetal rat brain neurons: a study of the regulation of endocytosis. J Neurochem. 1995 Jul;65(1):407–413. doi: 10.1046/j.1471-4159.1995.65010407.x. [DOI] [PubMed] [Google Scholar]
  8. Dargent B., Paillart C., Carlier E., Alcaraz G., Martin-Eauclaire M. F., Couraud F. Sodium channel internalization in developing neurons. Neuron. 1994 Sep;13(3):683–690. doi: 10.1016/0896-6273(94)90035-3. [DOI] [PubMed] [Google Scholar]
  9. Fambrough D. M. The sodium pump becomes a family. Trends Neurosci. 1988 Jul;11(7):325–328. doi: 10.1016/0166-2236(88)90096-3. [DOI] [PubMed] [Google Scholar]
  10. Gautron S., Dos Santos G., Pinto-Henrique D., Koulakoff A., Gros F., Berwald-Netter Y. The glial voltage-gated sodium channel: cell- and tissue-specific mRNA expression. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7272–7276. doi: 10.1073/pnas.89.15.7272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Green S. A., Setiadi H., McEver R. P., Kelly R. B. The cytoplasmic domain of P-selectin contains a sorting determinant that mediates rapid degradation in lysosomes. J Cell Biol. 1994 Feb;124(4):435–448. doi: 10.1083/jcb.124.4.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Griffiths G., Warren G., Quinn P., Mathieu-Costello O., Hoppeler H. Density of newly synthesized plasma membrane proteins in intracellular membranes. I. Stereological studies. J Cell Biol. 1984 Jun;98(6):2133–2141. doi: 10.1083/jcb.98.6.2133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gruenberg J., Maxfield F. R. Membrane transport in the endocytic pathway. Curr Opin Cell Biol. 1995 Aug;7(4):552–563. doi: 10.1016/0955-0674(95)80013-1. [DOI] [PubMed] [Google Scholar]
  14. Hartshorne R. P., Catterall W. A. The sodium channel from rat brain. Purification and subunit composition. J Biol Chem. 1984 Feb 10;259(3):1667–1675. [PubMed] [Google Scholar]
  15. Isom L. L., De Jongh K. S., Catterall W. A. Auxiliary subunits of voltage-gated ion channels. Neuron. 1994 Jun;12(6):1183–1194. doi: 10.1016/0896-6273(94)90436-7. [DOI] [PubMed] [Google Scholar]
  16. Isom L. L., De Jongh K. S., Patton D. E., Reber B. F., Offord J., Charbonneau H., Walsh K., Goldin A. L., Catterall W. A. Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science. 1992 May 8;256(5058):839–842. doi: 10.1126/science.1375395. [DOI] [PubMed] [Google Scholar]
  17. Isom L. L., Ragsdale D. S., De Jongh K. S., Westenbroek R. E., Reber B. F., Scheuer T., Catterall W. A. Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell. 1995 Nov 3;83(3):433–442. doi: 10.1016/0092-8674(95)90121-3. [DOI] [PubMed] [Google Scholar]
  18. Isom L. L., Scheuer T., Brownstein A. B., Ragsdale D. S., Murphy B. J., Catterall W. A. Functional co-expression of the beta 1 and type IIA alpha subunits of sodium channels in a mammalian cell line. J Biol Chem. 1995 Feb 17;270(7):3306–3312. doi: 10.1074/jbc.270.7.3306. [DOI] [PubMed] [Google Scholar]
  19. Jaffe D. B., Johnston D., Lasser-Ross N., Lisman J. E., Miyakawa H., Ross W. N. The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature. 1992 May 21;357(6375):244–246. doi: 10.1038/357244a0. [DOI] [PubMed] [Google Scholar]
  20. Joho R. H., Moorman J. R., VanDongen A. M., Kirsch G. E., Silberberg H., Schuster G., Brown A. M. Toxin and kinetic profile of rat brain type III sodium channels expressed in Xenopus oocytes. Brain Res Mol Brain Res. 1990 Feb;7(2):105–113. doi: 10.1016/0169-328x(90)90087-t. [DOI] [PubMed] [Google Scholar]
  21. Jover E., Massacrier A., Cau P., Martin M. F., Couraud F. The correlation between Na+ channel subunits and scorpion toxin-binding sites. A study in rat brain synaptosomes and in brain neurons developing in vitro. J Biol Chem. 1988 Jan 25;263(3):1542–1548. [PubMed] [Google Scholar]
  22. Kiedrowski L., Wroblewski J. T., Costa E. Intracellular sodium concentration in cultured cerebellar granule cells challenged with glutamate. Mol Pharmacol. 1994 May;45(5):1050–1054. [PubMed] [Google Scholar]
  23. Lara A., Dargent B., Julien F., Alcaraz G., Tricaud N., Couraud F., Jover E. Channel activators reduce the expression of sodium channel alpha-subunit mRNA in developing neurons. Brain Res Mol Brain Res. 1996 Apr;37(1-2):116–124. doi: 10.1016/0169-328x(95)00286-2. [DOI] [PubMed] [Google Scholar]
  24. Linden D. J., Smeyne M., Connor J. A. Induction of cerebellar long-term depression in culture requires postsynaptic action of sodium ions. Neuron. 1993 Dec;11(6):1093–1100. doi: 10.1016/0896-6273(93)90222-d. [DOI] [PubMed] [Google Scholar]
  25. Magee J. C., Johnston D. Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science. 1995 Apr 14;268(5208):301–304. doi: 10.1126/science.7716525. [DOI] [PubMed] [Google Scholar]
  26. Makita N., Bennett P. B., Jr, George A. L., Jr Voltage-gated Na+ channel beta 1 subunit mRNA expressed in adult human skeletal muscle, heart, and brain is encoded by a single gene. J Biol Chem. 1994 Mar 11;269(10):7571–7578. [PubMed] [Google Scholar]
  27. Mandel G. Tissue-specific expression of the voltage-sensitive sodium channel. J Membr Biol. 1992 Feb;125(3):193–205. doi: 10.1007/BF00236433. [DOI] [PubMed] [Google Scholar]
  28. Martin M. F., Rochat H. Large scale purification of toxins from the venom of the scorpion Androctonus australis Hector. Toxicon. 1986;24(11-12):1131–1139. doi: 10.1016/0041-0101(86)90139-x. [DOI] [PubMed] [Google Scholar]
  29. Miles K., Audigier S. S., Greengard P., Huganir R. L. Autoregulation of phosphorylation of the nicotinic acetylcholine receptor. J Neurosci. 1994 May;14(5 Pt 2):3271–3279. doi: 10.1523/JNEUROSCI.14-05-03271.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Noda M., Ikeda T., Suzuki H., Takeshima H., Takahashi T., Kuno M., Numa S. Expression of functional sodium channels from cloned cDNA. 1986 Aug 28-Sep 3Nature. 322(6082):826–828. doi: 10.1038/322826a0. [DOI] [PubMed] [Google Scholar]
  31. Nordmann J. J., Stuenkel E. L. Ca(2+)-independent regulation of neurosecretion by intracellular Na+. FEBS Lett. 1991 Nov 4;292(1-2):37–41. doi: 10.1016/0014-5793(91)80828-q. [DOI] [PubMed] [Google Scholar]
  32. Parton R. G., Simons K., Dotti C. G. Axonal and dendritic endocytic pathways in cultured neurons. J Cell Biol. 1992 Oct;119(1):123–137. doi: 10.1083/jcb.119.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schaller K. L., Krzemien D. M., Yarowsky P. J., Krueger B. K., Caldwell J. H. A novel, abundant sodium channel expressed in neurons and glia. J Neurosci. 1995 May;15(5 Pt 1):3231–3242. doi: 10.1523/JNEUROSCI.15-05-03231.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Scheuer T., Auld V. J., Boyd S., Offord J., Dunn R., Catterall W. A. Functional properties of rat brain sodium channels expressed in a somatic cell line. Science. 1990 Feb 16;247(4944):854–858. doi: 10.1126/science.2154850. [DOI] [PubMed] [Google Scholar]
  35. Sharkey R. G., Beneski D. A., Catterall W. A. Differential labeling of the alpha and beta 1 subunits of the sodium channel by photoreactive derivatives of scorpion toxin. Biochemistry. 1984 Dec 4;23(25):6078–6086. doi: 10.1021/bi00320a027. [DOI] [PubMed] [Google Scholar]
  36. Spruston N., Schiller Y., Stuart G., Sakmann B. Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science. 1995 Apr 14;268(5208):297–300. doi: 10.1126/science.7716524. [DOI] [PubMed] [Google Scholar]
  37. Stuart G. J., Sakmann B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature. 1994 Jan 6;367(6458):69–72. doi: 10.1038/367069a0. [DOI] [PubMed] [Google Scholar]
  38. Sutkowski E. M., Catterall W. A. Beta 1 subunits of sodium channels. Studies with subunit-specific antibodies. J Biol Chem. 1990 Jul 25;265(21):12393–12399. [PubMed] [Google Scholar]
  39. Suzuki H., Beckh S., Kubo H., Yahagi N., Ishida H., Kayano T., Noda M., Numa S. Functional expression of cloned cDNA encoding sodium channel III. FEBS Lett. 1988 Feb 8;228(1):195–200. doi: 10.1016/0014-5793(88)80615-x. [DOI] [PubMed] [Google Scholar]
  40. Trowbridge I. S. Endocytosis and signals for internalization. Curr Opin Cell Biol. 1991 Aug;3(4):634–641. doi: 10.1016/0955-0674(91)90034-v. [DOI] [PubMed] [Google Scholar]
  41. Waxman S. G., Ritchie J. M. Organization of ion channels in the myelinated nerve fiber. Science. 1985 Jun 28;228(4707):1502–1507. doi: 10.1126/science.2409596. [DOI] [PubMed] [Google Scholar]
  42. Westenbroek R. E., Merrick D. K., Catterall W. A. Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons. Neuron. 1989 Dec;3(6):695–704. doi: 10.1016/0896-6273(89)90238-9. [DOI] [PubMed] [Google Scholar]
  43. Wolitzky B. A., Fambrough D. M. Regulation of the (Na+ + K+)-ATPase in cultured chick skeletal muscle. Modulation of expression by the demand for ion transport. J Biol Chem. 1986 Jul 25;261(21):9990–9999. [PubMed] [Google Scholar]
  44. Wollner D. A., Catterall W. A. Localization of sodium channels in axon hillocks and initial segments of retinal ganglion cells. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8424–8428. doi: 10.1073/pnas.83.21.8424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. de Lima M. E., Couraud F., Lapied B., Pelhate M., Ribeiro Diniz C., Rochat H. Photoaffinity labeling of scorpion toxin receptors associated with insect synaptosomal Na+ channels. Biochem Biophys Res Commun. 1988 Feb 29;151(1):187–192. doi: 10.1016/0006-291x(88)90577-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES