Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Jul 1;134(1):93–102. doi: 10.1083/jcb.134.1.93

Forced expression of dystrophin deletion constructs reveals structure- function correlations

PMCID: PMC2120912  PMID: 8698825

Abstract

Dystrophin plays an important role in skeletal muscle by linking the cytoskeleton and the extracellular matrix. The amino terminus of dystrophin binds to actin and possibly other components of the subsarcolemmal cytoskeleton, while the carboxy terminus associates with a group of integral and peripheral membrane proteins and glycoproteins that are collectively known as the dystrophin-associated protein (DAP) complex. We have generated transgenic/mdx mice expressing "full-length" dystrophin constructs, but with consecutive deletions within the COOH- terminal domains. These mice have enabled analysis of the interaction between dystrophin and members of the DAP complex and the effects that perturbing these associations have on the dystrophic process. Deletions within the cysteine-rich region disrupt the interaction between dystrophin and the DAP complex, leading to a severe dystrophic pathology. These deletions remove the beta-dystroglycan-binding site, which leads to a parallel loss of both beta-dystroglycan and the sarcoglycan complex from the sarcolemma. In contrast, deletion of the alternatively spliced domain and the extreme COOH terminus has no apparent effect on the function of dystrophin when expressed at normal levels. The proteins resulting from these latter two deletions supported formation of a completely normal DAP complex, and their expression was associated with normal muscle morphology in mdx mice. These data indicate that the cysteine-rich domain is critical for functional activity, presumably by mediating a direct interaction with beta-dystroglycan. However, the remainder of the COOH terminus is not required for assembly of the DAP complex.

Full Text

The Full Text of this article is available as a PDF (5.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. E., Butler M. H., Dwyer T. M., Peters M. F., Murnane A. A., Froehner S. C. Two forms of mouse syntrophin, a 58 kd dystrophin-associated protein, differ in primary structure and tissue distribution. Neuron. 1993 Sep;11(3):531–540. doi: 10.1016/0896-6273(93)90157-m. [DOI] [PubMed] [Google Scholar]
  2. Ahn A. H., Kunkel L. M. Syntrophin binds to an alternatively spliced exon of dystrophin. J Cell Biol. 1995 Feb;128(3):363–371. doi: 10.1083/jcb.128.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ahn A. H., Kunkel L. M. The structural and functional diversity of dystrophin. Nat Genet. 1993 Apr;3(4):283–291. doi: 10.1038/ng0493-283. [DOI] [PubMed] [Google Scholar]
  4. Belkin A. M., Burridge K. Association of aciculin with dystrophin and utrophin. J Biol Chem. 1995 Mar 17;270(11):6328–6337. doi: 10.1074/jbc.270.11.6328. [DOI] [PubMed] [Google Scholar]
  5. Bies R. D., Caskey C. T., Fenwick R. An intact cysteine-rich domain is required for dystrophin function. J Clin Invest. 1992 Aug;90(2):666–672. doi: 10.1172/JCI115909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blake D. J., Nawrotzki R., Peters M. F., Froehner S. C., Davies K. E. Isoform diversity of dystrobrevin, the murine 87-kDa postsynaptic protein. J Biol Chem. 1996 Mar 29;271(13):7802–7810. doi: 10.1074/jbc.271.13.7802. [DOI] [PubMed] [Google Scholar]
  7. Brenman J. E., Chao D. S., Gee S. H., McGee A. W., Craven S. E., Santillano D. R., Wu Z., Huang F., Xia H., Peters M. F. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell. 1996 Mar 8;84(5):757–767. doi: 10.1016/s0092-8674(00)81053-3. [DOI] [PubMed] [Google Scholar]
  8. Bönnemann C. G., Modi R., Noguchi S., Mizuno Y., Yoshida M., Gussoni E., McNally E. M., Duggan D. J., Angelini C., Hoffman E. P. Beta-sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex. Nat Genet. 1995 Nov;11(3):266–273. doi: 10.1038/ng1195-266. [DOI] [PubMed] [Google Scholar]
  9. Cox G. A., Cole N. M., Matsumura K., Phelps S. F., Hauschka S. D., Campbell K. P., Faulkner J. A., Chamberlain J. S. Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature. 1993 Aug 19;364(6439):725–729. doi: 10.1038/364725a0. [DOI] [PubMed] [Google Scholar]
  10. Cox G. A., Phelps S. F., Chapman V. M., Chamberlain J. S. New mdx mutation disrupts expression of muscle and nonmuscle isoforms of dystrophin. Nat Genet. 1993 May;4(1):87–93. doi: 10.1038/ng0593-87. [DOI] [PubMed] [Google Scholar]
  11. Cox G. A., Sunada Y., Campbell K. P., Chamberlain J. S. Dp71 can restore the dystrophin-associated glycoprotein complex in muscle but fails to prevent dystrophy. Nat Genet. 1994 Dec;8(4):333–339. doi: 10.1038/ng1294-333. [DOI] [PubMed] [Google Scholar]
  12. England S. B., Nicholson L. V., Johnson M. A., Forrest S. M., Love D. R., Zubrzycka-Gaarn E. E., Bulman D. E., Harris J. B., Davies K. E. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature. 1990 Jan 11;343(6254):180–182. doi: 10.1038/343180a0. [DOI] [PubMed] [Google Scholar]
  13. Ervasti J. M., Campbell K. P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol. 1993 Aug;122(4):809–823. doi: 10.1083/jcb.122.4.809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ervasti J. M., Campbell K. P. Dystrophin and the membrane skeleton. Curr Opin Cell Biol. 1993 Feb;5(1):82–87. doi: 10.1016/s0955-0674(05)80012-2. [DOI] [PubMed] [Google Scholar]
  15. Ervasti J. M., Ohlendieck K., Kahl S. D., Gaver M. G., Campbell K. P. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature. 1990 May 24;345(6273):315–319. doi: 10.1038/345315a0. [DOI] [PubMed] [Google Scholar]
  16. Greenberg D. S., Sunada Y., Campbell K. P., Yaffe D., Nudel U. Exogenous Dp71 restores the levels of dystrophin associated proteins but does not alleviate muscle damage in mdx mice. Nat Genet. 1994 Dec;8(4):340–344. doi: 10.1038/ng1294-340. [DOI] [PubMed] [Google Scholar]
  17. Helliwell T. R., Ellis J. M., Mountford R. C., Appleton R. E., Morris G. E. A truncated dystrophin lacking the C-terminal domains is localized at the muscle membrane. Am J Hum Genet. 1992 Mar;50(3):508–514. [PMC free article] [PubMed] [Google Scholar]
  18. Hoffman E. P., Garcia C. A., Chamberlain J. S., Angelini C., Lupski J. R., Fenwick R. Is the carboxyl-terminus of dystrophin required for membrane association? A novel, severe case of Duchenne muscular dystrophy. Ann Neurol. 1991 Oct;30(4):605–610. doi: 10.1002/ana.410300414. [DOI] [PubMed] [Google Scholar]
  19. Ibraghimov-Beskrovnaya O., Ervasti J. M., Leveille C. J., Slaughter C. A., Sernett S. W., Campbell K. P. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature. 1992 Feb 20;355(6362):696–702. doi: 10.1038/355696a0. [DOI] [PubMed] [Google Scholar]
  20. Jung D., Leturcq F., Sunada Y., Duclos F., Tomé F. M., Moomaw C., Merlini L., Azibi K., Chaouch M., Slaughter C. Absence of gamma-sarcoglycan (35 DAG) in autosomal recessive muscular dystrophy linked to chromosome 13q12. FEBS Lett. 1996 Feb 26;381(1-2):15–20. doi: 10.1016/0014-5793(96)00056-7. [DOI] [PubMed] [Google Scholar]
  21. Jung D., Yang B., Meyer J., Chamberlain J. S., Campbell K. P. Identification and characterization of the dystrophin anchoring site on beta-dystroglycan. J Biol Chem. 1995 Nov 10;270(45):27305–27310. doi: 10.1074/jbc.270.45.27305. [DOI] [PubMed] [Google Scholar]
  22. Koenig M., Hoffman E. P., Bertelson C. J., Monaco A. P., Feener C., Kunkel L. M. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell. 1987 Jul 31;50(3):509–517. doi: 10.1016/0092-8674(87)90504-6. [DOI] [PubMed] [Google Scholar]
  23. Koenig M., Kunkel L. M. Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J Biol Chem. 1990 Mar 15;265(8):4560–4566. [PubMed] [Google Scholar]
  24. Lee C. C., Pearlman J. A., Chamberlain J. S., Caskey C. T. Expression of recombinant dystrophin and its localization to the cell membrane. Nature. 1991 Jan 24;349(6307):334–336. doi: 10.1038/349334a0. [DOI] [PubMed] [Google Scholar]
  25. Lim L. E., Duclos F., Broux O., Bourg N., Sunada Y., Allamand V., Meyer J., Richard I., Moomaw C., Slaughter C. Beta-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nat Genet. 1995 Nov;11(3):257–265. doi: 10.1038/ng1195-257. [DOI] [PubMed] [Google Scholar]
  26. Ljunggren A., Duggan D., McNally E., Boylan K. B., Gama C. H., Kunkel L. M., Hoffman E. P. Primary adhalin deficiency as a cause of muscular dystrophy in patients with normal dystrophin. Ann Neurol. 1995 Sep;38(3):367–372. doi: 10.1002/ana.410380305. [DOI] [PubMed] [Google Scholar]
  27. Matsumura K., Tomé F. M., Ionasescu V., Ervasti J. M., Anderson R. D., Romero N. B., Simon D., Récan D., Kaplan J. C., Fardeau M. Deficiency of dystrophin-associated proteins in Duchenne muscular dystrophy patients lacking COOH-terminal domains of dystrophin. J Clin Invest. 1993 Aug;92(2):866–871. doi: 10.1172/JCI116661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. McCabe E. R., Towbin J., Chamberlain J., Baumbach L., Witkowski J., van Ommen G. J., Koenig M., Kunkel L. M., Seltzer W. K. Complementary DNA probes for the Duchenne muscular dystrophy locus demonstrate a previously undetectable deletion in a patient with dystrophic myopathy, glycerol kinase deficiency, and congenital adrenal hypoplasia. J Clin Invest. 1989 Jan;83(1):95–99. doi: 10.1172/JCI113890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Niwa M., Rose S. D., Berget S. M. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev. 1990 Sep;4(9):1552–1559. doi: 10.1101/gad.4.9.1552. [DOI] [PubMed] [Google Scholar]
  30. Noguchi S., McNally E. M., Ben Othmane K., Hagiwara Y., Mizuno Y., Yoshida M., Yamamoto H., Bönnemann C. G., Gussoni E., Denton P. H. Mutations in the dystrophin-associated protein gamma-sarcoglycan in chromosome 13 muscular dystrophy. Science. 1995 Nov 3;270(5237):819–822. doi: 10.1126/science.270.5237.819. [DOI] [PubMed] [Google Scholar]
  31. Ohlendieck K., Campbell K. P. Dystrophin-associated proteins are greatly reduced in skeletal muscle from mdx mice. J Cell Biol. 1991 Dec;115(6):1685–1694. doi: 10.1083/jcb.115.6.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ohlendieck K., Ervasti J. M., Snook J. B., Campbell K. P. Dystrophin-glycoprotein complex is highly enriched in isolated skeletal muscle sarcolemma. J Cell Biol. 1991 Jan;112(1):135–148. doi: 10.1083/jcb.112.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pearlman J. A., Powaser P. A., Elledge S. J., Caskey C. T. Troponin T is capable of binding dystrophin via a leucine zipper. FEBS Lett. 1994 Nov 7;354(2):183–186. doi: 10.1016/0014-5793(94)01119-2. [DOI] [PubMed] [Google Scholar]
  34. Peters M. F., Kramarcy N. R., Sealock R., Froehner S. C. beta 2-Syntrophin: localization at the neuromuscular junction in skeletal muscle. Neuroreport. 1994 Aug 15;5(13):1577–1580. [PubMed] [Google Scholar]
  35. Phelps S. F., Hauser M. A., Cole N. M., Rafael J. A., Hinkle R. T., Faulkner J. A., Chamberlain J. S. Expression of full-length and truncated dystrophin mini-genes in transgenic mdx mice. Hum Mol Genet. 1995 Aug;4(8):1251–1258. doi: 10.1093/hmg/4.8.1251. [DOI] [PubMed] [Google Scholar]
  36. Ponting C. P., Blake D. J., Davies K. E., Kendrick-Jones J., Winder S. J. ZZ and TAZ: new putative zinc fingers in dystrophin and other proteins. Trends Biochem Sci. 1996 Jan;21(1):11–13. [PubMed] [Google Scholar]
  37. Rafael J. A., Sunada Y., Cole N. M., Campbell K. P., Faulkner J. A., Chamberlain J. S. Prevention of dystrophic pathology in mdx mice by a truncated dystrophin isoform. Hum Mol Genet. 1994 Oct;3(10):1725–1733. doi: 10.1093/hmg/3.10.1725. [DOI] [PubMed] [Google Scholar]
  38. Roberds S. L., Anderson R. D., Ibraghimov-Beskrovnaya O., Campbell K. P. Primary structure and muscle-specific expression of the 50-kDa dystrophin-associated glycoprotein (adhalin). J Biol Chem. 1993 Nov 15;268(32):23739–23742. [PubMed] [Google Scholar]
  39. Suzuki A., Yoshida M., Hayashi K., Mizuno Y., Hagiwara Y., Ozawa E. Molecular organization at the glycoprotein-complex-binding site of dystrophin. Three dystrophin-associated proteins bind directly to the carboxy-terminal portion of dystrophin. Eur J Biochem. 1994 Mar 1;220(2):283–292. doi: 10.1111/j.1432-1033.1994.tb18624.x. [DOI] [PubMed] [Google Scholar]
  40. Suzuki A., Yoshida M., Ozawa E. Mammalian alpha 1- and beta 1-syntrophin bind to the alternative splice-prone region of the dystrophin COOH terminus. J Cell Biol. 1995 Feb;128(3):373–381. doi: 10.1083/jcb.128.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wells D. J., Wells K. E., Asante E. A., Turner G., Sunada Y., Campbell K. P., Walsh F. S., Dickson G. Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Hum Mol Genet. 1995 Aug;4(8):1245–1250. doi: 10.1093/hmg/4.8.1245. [DOI] [PubMed] [Google Scholar]
  42. Winnard A. V., Mendell J. R., Prior T. W., Florence J., Burghes A. H. Frameshift deletions of exons 3-7 and revertant fibers in Duchenne muscular dystrophy: mechanisms of dystrophin production. Am J Hum Genet. 1995 Jan;56(1):158–166. [PMC free article] [PubMed] [Google Scholar]
  43. Yang B., Jung D., Rafael J. A., Chamberlain J. S., Campbell K. P. Identification of alpha-syntrophin binding to syntrophin triplet, dystrophin, and utrophin. J Biol Chem. 1995 Mar 10;270(10):4975–4978. doi: 10.1074/jbc.270.10.4975. [DOI] [PubMed] [Google Scholar]
  44. Yoshida M., Yamamoto H., Noguchi S., Mizuno Y., Hagiwara Y., Ozawa E. Dystrophin-associated protein A0 is a homologue of the Torpedo 87K protein. FEBS Lett. 1995 Jul 3;367(3):311–314. doi: 10.1016/0014-5793(95)00574-s. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES