Abstract
Candida boidinii Pmp47, an integral peroxisomal membrane protein, belongs to a family of mitochondrial solute transporters (e.g., ATP/ADP exchanger), and is the only known peroxisomal member of this family. However, its physiological and biochemical functions have been unrevealed because of the difficulties in the molecular genetics of C. boidinii. In this study, we first isolated the PMP47 gene, which was the single gene encoding for Pmp47 in a gene-engineerable strain S2 of C. boidinii. Sequence analysis revealed that it was very similar to PMP47A and PMP47B genes from a polyploidal C. Boidinii strain (ATCC32195). Next, the PMP47 gene was disrupted and the disruption strain (pmp47delta) was analyzed. Depletion of PMP47 from strain S2 resulted in a retarded growth on oleate and a complete loss of growth on methanol. Both growth substrates require peroxisomal metabolism. EM observations revealed the presence of peroxisomes in methanol- and oleate-induced cells of pmp47delta, but in reduced numbers, and the presence of material of high electron density in the cytoplasm in both cases. Methanol-induced cells of pmp47delta were investigated in detail. The activity of one of the methanol-induced peroxisome matrix enzymes, dihydroxyacetone synthase (DHAS), was not detected in pmp47delta. Further biochemical and immunocytochemical experiments revealed that the DHAS protein aggregated in the cytoplasm as an inclusion body, while two other peroxisome matrix enzymes, alcohol oxidase (AOD) and catalase, were active and found in peroxisomes. Two peroxisome-deficient mutants, strains M6 and M13 (described in previous studies), retained DHAS activity although it was mislocalized to the cytoplasm and the nucleus. We disrupted PMP47 in these peroxisome- deficient mutants. In both strains, M6-pmp47delta and M13-pmp47delta, DHAS was enzymatically active and was located in the cytoplasm and the nucleus. We suggest that an unknown small molecule, which PMP47 transports, is necessary for the folding or the translocation machinery of DHAS within peroxisomes. Pmp47 does not catalyze folding directly because active DHAS is observed in the M6-pmp47delta and M13-pmp47delta strains. Since both AOD and DHAS have the PTS1 motif sequences at their carboxyl terminal, our results first show that depletion of Pmp47 could dissect the peroxisomal import pathway (PTS1 pathway) of these proteins.
Full Text
The Full Text of this article is available as a PDF (3.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BERGMEYER H. U. Zur Messung von Katalase-Aktivitäten. Biochem Z. 1955;327(4):255–258. [PubMed] [Google Scholar]
- Bellion E., Goodman J. M. Proton ionophores prevent assembly of a peroxisomal protein. Cell. 1987 Jan 16;48(1):165–173. doi: 10.1016/0092-8674(87)90367-9. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cregg J. M., Vedvick T. S., Raschke W. C. Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology (N Y) 1993 Aug;11(8):905–910. doi: 10.1038/nbt0893-905. [DOI] [PubMed] [Google Scholar]
- Cyr D. M., Stuart R. A., Neupert W. A matrix ATP requirement for presequence translocation across the inner membrane of mitochondria. J Biol Chem. 1993 Nov 15;268(32):23751–23754. [PubMed] [Google Scholar]
- Dodt G., Braverman N., Wong C., Moser A., Moser H. W., Watkins P., Valle D., Gould S. J. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat Genet. 1995 Feb;9(2):115–125. doi: 10.1038/ng0295-115. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Gellissen G., Janowicz Z. A., Merckelbach A., Piontek M., Keup P., Weydemann U., Hollenberg C. P., Strasser A. W. Heterologous gene expression in Hansenula polymorpha: efficient secretion of glucoamylase. Biotechnology (N Y) 1991 Mar;9(3):291–295. doi: 10.1038/nbt0391-291. [DOI] [PubMed] [Google Scholar]
- Glover J. R., Andrews D. W., Rachubinski R. A. Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10541–10545. doi: 10.1073/pnas.91.22.10541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman J. M., Maher J., Silver P. A., Pacifico A., Sanders D. The membrane proteins of the methanol-induced peroxisome of Candida boidinii. Initial characterization and generation of monoclonal antibodies. J Biol Chem. 1986 Mar 5;261(7):3464–3468. [PubMed] [Google Scholar]
- Goodman J. M., Scott C. W., Donahue P. N., Atherton J. P. Alcohol oxidase assembles post-translationally into the peroxisome of Candida boidinii. J Biol Chem. 1984 Jul 10;259(13):8485–8493. [PubMed] [Google Scholar]
- Goodman J. M., Trapp S. B., Hwang H., Veenhuis M. Peroxisomes induced in Candida boidinii by methanol, oleic acid and D-alanine vary in metabolic function but share common integral membrane proteins. J Cell Sci. 1990 Sep;97(Pt 1):193–204. doi: 10.1242/jcs.97.1.193. [DOI] [PubMed] [Google Scholar]
- Gärtner J., Moser H., Valle D. Mutations in the 70K peroxisomal membrane protein gene in Zellweger syndrome. Nat Genet. 1992 Apr;1(1):16–23. doi: 10.1038/ng0492-16. [DOI] [PubMed] [Google Scholar]
- Hansen H., Didion T., Thiemann A., Veenhuis M., Roggenkamp R. Targeting sequences of the two major peroxisomal proteins in the methylotrophic yeast Hansenula polymorpha. Mol Gen Genet. 1992 Nov;235(2-3):269–278. doi: 10.1007/BF00279370. [DOI] [PubMed] [Google Scholar]
- Heyman J. A., Monosov E., Subramani S. Role of the PAS1 gene of Pichia pastoris in peroxisome biogenesis. J Cell Biol. 1994 Dec;127(5):1259–1273. doi: 10.1083/jcb.127.5.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imanaka T., Small G. M., Lazarow P. B. Translocation of acyl-CoA oxidase into peroxisomes requires ATP hydrolysis but not a membrane potential. J Cell Biol. 1987 Dec;105(6 Pt 2):2915–2922. doi: 10.1083/jcb.105.6.2915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jank B., Habermann B., Schweyen R. J., Link T. A. PMP47, a peroxisomal homologue of mitochondrial solute carrier proteins. Trends Biochem Sci. 1993 Nov;18(11):427–428. [PubMed] [Google Scholar]
- Kamijo K., Taketani S., Yokota S., Osumi T., Hashimoto T. The 70-kDa peroxisomal membrane protein is a member of the Mdr (P-glycoprotein)-related ATP-binding protein superfamily. J Biol Chem. 1990 Mar 15;265(8):4534–4540. [PubMed] [Google Scholar]
- Kato N., Higuchi T., Sakazawa C., Nishizawa T., Tani Y., Yamada H. Purification and properties of a transketolase responsible for formaldehyde fixation in a methanol-utilizing yeast, candida boidinii (Kloeckera sp.) No. 2201. Biochim Biophys Acta. 1982 Apr 13;715(2):143–150. [PubMed] [Google Scholar]
- Kuan J., Saier M. H., Jr The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. Crit Rev Biochem Mol Biol. 1993;28(3):209–233. doi: 10.3109/10409239309086795. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- McCammon M. T., Dowds C. A., Orth K., Moomaw C. R., Slaughter C. A., Goodman J. M. Sorting of peroxisomal membrane protein PMP47 from Candida boidinii into peroxisomal membranes of Saccharomyces cerevisiae. J Biol Chem. 1990 Nov 25;265(33):20098–20105. [PubMed] [Google Scholar]
- McCammon M. T., McNew J. A., Willy P. J., Goodman J. M. An internal region of the peroxisomal membrane protein PMP47 is essential for sorting to peroxisomes. J Cell Biol. 1994 Mar;124(6):915–925. doi: 10.1083/jcb.124.6.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCollum D., Monosov E., Subramani S. The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells--the PAS8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal, and is a member of the TPR protein family. J Cell Biol. 1993 May;121(4):761–774. doi: 10.1083/jcb.121.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNew J. A., Goodman J. M. An oligomeric protein is imported into peroxisomes in vivo. J Cell Biol. 1994 Dec;127(5):1245–1257. doi: 10.1083/jcb.127.5.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreno M., Lark R., Campbell K. L., Goodman J. M. The peroxisomal membrane proteins of Candida boidinii: gene isolation and expression. Yeast. 1994 Nov;10(11):1447–1457. doi: 10.1002/yea.320101108. [DOI] [PubMed] [Google Scholar]
- Mosser J., Douar A. M., Sarde C. O., Kioschis P., Feil R., Moser H., Poustka A. M., Mandel J. L., Aubourg P. Putative X-linked adrenoleukodystrophy gene shares unexpected homology with ABC transporters. Nature. 1993 Feb 25;361(6414):726–730. doi: 10.1038/361726a0. [DOI] [PubMed] [Google Scholar]
- NASH T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953 Oct;55(3):416–421. doi: 10.1042/bj0550416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Purdue P. E., Lazarow P. B. Peroxisomal biogenesis: multiple pathways of protein import. J Biol Chem. 1994 Dec 2;269(48):30065–30068. [PubMed] [Google Scholar]
- Sakai Y., Goh T. K., Tani Y. High-frequency transformation of a methylotrophic yeast, Candida boidinii, with autonomously replicating plasmids which are also functional in Saccharomyces cerevisiae. J Bacteriol. 1993 Jun;175(11):3556–3562. doi: 10.1128/jb.175.11.3556-3562.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakai Y., Kazarimoto T., Tani Y. Transformation system for an asporogenous methylotrophic yeast, Candida boidinii: cloning of the orotidine-5'-phosphate decarboxylase gene (URA3), isolation of uracil auxotrophic mutants, and use of the mutants for integrative transformation. J Bacteriol. 1991 Dec;173(23):7458–7463. doi: 10.1128/jb.173.23.7458-7463.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakai Y., Marshall P. A., Saiganji A., Takabe K., Saiki H., Kato N., Goodman J. M. The Candida boidinii peroxisomal membrane protein Pmp30 has a role in peroxisomal proliferation and is functionally homologous to Pmp27 from Saccharomyces cerevisiae. J Bacteriol. 1995 Dec;177(23):6773–6781. doi: 10.1128/jb.177.23.6773-6781.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakai Y., Rogi T., Takeuchi R., Kato N., Tani Y. Expression of Saccharomyces adenylate kinase gene in Candida boidinii under the regulation of its alcohol oxidase promoter. Appl Microbiol Biotechnol. 1995 Mar;42(6):860–864. doi: 10.1007/BF00191182. [DOI] [PubMed] [Google Scholar]
- Sakai Y., Rogi T., Yonehara T., Kato N., Tani Y. High-level ATP production by a genetically-engineered Candida yeast. Biotechnology (N Y) 1994 Mar;12(3):291–293. doi: 10.1038/nbt0394-291. [DOI] [PubMed] [Google Scholar]
- Sakai Y., Tani Y. Cloning and sequencing of the alcohol oxidase-encoding gene (AOD1) from the formaldehyde-producing asporogeneous methylotrophic yeast, Candida boidinii S2. Gene. 1992 May 1;114(1):67–73. doi: 10.1016/0378-1119(92)90708-w. [DOI] [PubMed] [Google Scholar]
- Sakai Y., Tani Y. Directed mutagenesis in an asporogenous methylotrophic yeast: cloning, sequencing, and one-step gene disruption of the 3-isopropylmalate dehydrogenase gene (LEU2) of Candida boidinii to derive doubly auxotrophic marker strains. J Bacteriol. 1992 Sep;174(18):5988–5993. doi: 10.1128/jb.174.18.5988-5993.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakai Y., Tani Y. Production of Formaldehyde by Detergent-Treated Cells of a Methanol Yeast, Candida boidinii S2 Mutant Strain AOU-1. Appl Environ Microbiol. 1988 Feb;54(2):485–489. doi: 10.1128/aem.54.2.485-489.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Subramani S. Protein import into peroxisomes and biogenesis of the organelle. Annu Rev Cell Biol. 1993;9:445–478. doi: 10.1146/annurev.cb.09.110193.002305. [DOI] [PubMed] [Google Scholar]
- Swinkels B. W., Gould S. J., Bodnar A. G., Rachubinski R. A., Subramani S. A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolase. EMBO J. 1991 Nov;10(11):3255–3262. doi: 10.1002/j.1460-2075.1991.tb04889.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terlecky S. R., Nuttley W. M., McCollum D., Sock E., Subramani S. The Pichia pastoris peroxisomal protein PAS8p is the receptor for the C-terminal tripeptide peroxisomal targeting signal. EMBO J. 1995 Aug 1;14(15):3627–3634. doi: 10.1002/j.1460-2075.1995.tb00032.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tolbert N. E. Isolation of subcellular organelles of metabolism on isopycnic sucrose gradients. Methods Enzymol. 1974;31:734–746. doi: 10.1016/0076-6879(74)31077-4. [DOI] [PubMed] [Google Scholar]
- Veenhuis M., Goodman J. M. Peroxisomal assembly: membrane proliferation precedes the induction of the abundant matrix proteins in the methylotrophic yeast Candida boidinii. J Cell Sci. 1990 Aug;96(Pt 4):583–590. doi: 10.1242/jcs.96.4.583. [DOI] [PubMed] [Google Scholar]
- Walton P. A., Hill P. E., Subramani S. Import of stably folded proteins into peroxisomes. Mol Biol Cell. 1995 Jun;6(6):675–683. doi: 10.1091/mbc.6.6.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiemer E. A., Nuttley W. M., Bertolaet B. L., Li X., Francke U., Wheelock M. J., Anné U. K., Johnson K. R., Subramani S. Human peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. J Cell Biol. 1995 Jul;130(1):51–65. doi: 10.1083/jcb.130.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
- van den Bosch H., Schutgens R. B., Wanders R. J., Tager J. M. Biochemistry of peroxisomes. Annu Rev Biochem. 1992;61:157–197. doi: 10.1146/annurev.bi.61.070192.001105. [DOI] [PubMed] [Google Scholar]