Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Jul 1;134(1):81–92. doi: 10.1083/jcb.134.1.81

Drosophila paramyosin/miniparamyosin gene products show a large diversity in quantity, localization, and isoform pattern: a possible role in muscle maturation and function

PMCID: PMC2120917  PMID: 8698824

Abstract

The Drosophila paramyosin/miniparamyosin gene expresses two products of different molecular weight transcriptionally regulated from two different promoters. Distinct muscle types also have different relative amounts of myosin, paramyosin, and miniparamyosin, reflecting differences in the organization of their thick filaments. Immunofluorescence and EM data indicate that miniparamyosin is mainly located in the M line and at both ends of the thick filaments in Drosophila indirect flight muscles, while paramyosin is present all along the thick filaments. In the tergal depressor of the trochanter muscle, both proteins are distributed all along the A band. In contrast, in the waterbug, Lethocerus, both paramyosin and miniparamyosin are distributed along the length of the indirect flight and leg muscle thick filaments. Two-dimensional and one-dimensional Western blot analyses have revealed that miniparamyosin has several isoforms, focusing over a very wide pH range, all of which are phosphorylated in vivo. The changes in isoform patterns of miniparamyosin and paramyosin indicate a direct or indirect involvement of these proteins in muscle function and flight. This wide spectrum of potential regulatory characteristics underlines the key importance of paramyosin/miniparamyosin and its complex isoform pattern in the organization of the invertebrate thick filament.

Full Text

The Full Text of this article is available as a PDF (5.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball E., Karlik C. C., Beall C. J., Saville D. L., Sparrow J. C., Bullard B., Fyrberg E. A. Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate. Cell. 1987 Oct 23;51(2):221–228. doi: 10.1016/0092-8674(87)90149-8. [DOI] [PubMed] [Google Scholar]
  2. Bandman E. Contractile protein isoforms in muscle development. Dev Biol. 1992 Dec;154(2):273–283. doi: 10.1016/0012-1606(92)90067-q. [DOI] [PubMed] [Google Scholar]
  3. Becker K. D., O'Donnell P. T., Heitz J. M., Vito M., Bernstein S. I. Analysis of Drosophila paramyosin: identification of a novel isoform which is restricted to a subset of adult muscles. J Cell Biol. 1992 Feb;116(3):669–681. doi: 10.1083/jcb.116.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beinbrech G., Ashton F. T., Pepe F. A. The invertebrate myosin filament: subfilament arrangement of the solid filaments of insect flight muscles. Biophys J. 1992 Jun;61(6):1495–1512. doi: 10.1016/S0006-3495(92)81955-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernstein S. I., Hansen C. J., Becker K. D., Wassenberg D. R., 2nd, Roche E. S., Donady J. J., Emerson C. P., Jr Alternative RNA splicing generates transcripts encoding a thorax-specific isoform of Drosophila melanogaster myosin heavy chain. Mol Cell Biol. 1986 Jul;6(7):2511–2519. doi: 10.1128/mcb.6.7.2511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bernstein S. I., O'Donnell P. T., Cripps R. M. Molecular genetic analysis of muscle development, structure, and function in Drosophila. Int Rev Cytol. 1993;143:63–152. doi: 10.1016/s0074-7696(08)61874-4. [DOI] [PubMed] [Google Scholar]
  7. Bullard B., Dabrowska R., Winkelman L. The contractile and regulatory proteins of insect flight muscle. Biochem J. 1973 Oct;135(2):277–286. doi: 10.1042/bj1350277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bullard B., Hammond K. S., Luke B. M. The site of paramyosin in insect flight muscle and the presence of an unidentified protein between myosin filaments and Z-line. J Mol Biol. 1977 Sep 25;115(3):417–440. doi: 10.1016/0022-2836(77)90163-2. [DOI] [PubMed] [Google Scholar]
  9. Bullard B., Leonard K., Larkins A., Butcher G., Karlik C., Fyrberg E. Troponin of asynchronous flight muscle. J Mol Biol. 1988 Dec 5;204(3):621–637. doi: 10.1016/0022-2836(88)90360-9. [DOI] [PubMed] [Google Scholar]
  10. Bullard B., Luke B., Winkelman L. The paramyosin of insect flight muscle. J Mol Biol. 1973 Apr 5;75(2):359–367. doi: 10.1016/0022-2836(73)90026-0. [DOI] [PubMed] [Google Scholar]
  11. Castellani L., Vibert P. Location of paramyosin in relation to the subfilaments within the thick filaments of scallop striated muscle. J Muscle Res Cell Motil. 1992 Apr;13(2):174–182. doi: 10.1007/BF01874154. [DOI] [PubMed] [Google Scholar]
  12. Cohen C., Parry D. A. Alpha-helical coiled coils and bundles: how to design an alpha-helical protein. Proteins. 1990;7(1):1–15. doi: 10.1002/prot.340070102. [DOI] [PubMed] [Google Scholar]
  13. Collier V. L., Kronert W. A., O'Donnell P. T., Edwards K. A., Bernstein S. I. Alternative myosin hinge regions are utilized in a tissue-specific fashion that correlates with muscle contraction speed. Genes Dev. 1990 Jun;4(6):885–895. doi: 10.1101/gad.4.6.885. [DOI] [PubMed] [Google Scholar]
  14. Currie D. A., Bate M. The development of adult abdominal muscles in Drosophila: myoblasts express twist and are associated with nerves. Development. 1991 Sep;113(1):91–102. doi: 10.1242/dev.113.1.91. [DOI] [PubMed] [Google Scholar]
  15. Deitiker P. R., Epstein H. F. Thick filament substructures in Caenorhabditis elegans: evidence for two populations of paramyosin. J Cell Biol. 1993 Oct;123(2):303–311. doi: 10.1083/jcb.123.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dey C. S., Deitiker P. R., Epstein H. F. Assembly-dependent phosphorylation of myosin and paramyosin of native thick filaments in Caenorhabditis elegans. Biochem Biophys Res Commun. 1992 Aug 14;186(3):1528–1532. doi: 10.1016/s0006-291x(05)81580-3. [DOI] [PubMed] [Google Scholar]
  17. Epstein H. F., Berliner G. C., Casey D. L., Ortiz I. Purified thick filaments from the nematode Caenorhabditis elegans: evidence for multiple proteins associated with core structures. J Cell Biol. 1988 Jun;106(6):1985–1995. doi: 10.1083/jcb.106.6.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Epstein H. F., Bernstein S. I. Genetic approaches to understanding muscle development. Dev Biol. 1992 Dec;154(2):231–244. doi: 10.1016/0012-1606(92)90064-n. [DOI] [PubMed] [Google Scholar]
  19. Ferguson C., Lakey A., Hutchings A., Butcher G. W., Leonard K. R., Bullard B. Cytoskeletal proteins of insect muscle: location of zeelins in Lethocerus flight and leg muscle. J Cell Sci. 1994 May;107(Pt 5):1115–1129. doi: 10.1242/jcs.107.5.1115. [DOI] [PubMed] [Google Scholar]
  20. Fuchs R. MacPattern: protein pattern searching on the Apple Macintosh. Comput Appl Biosci. 1991 Jan;7(1):105–106. doi: 10.1093/bioinformatics/7.1.105. [DOI] [PubMed] [Google Scholar]
  21. Fujita S. C., Inoue H., Yoshioka T., Hotta Y. Quantitative tissue isolation from Drosophila freeze-dried in acetone. Biochem J. 1987 Apr 1;243(1):97–104. doi: 10.1042/bj2430097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Fyrberg E., Beall C. Genetic approaches to myofibril form and function in Drosophila. Trends Genet. 1990 Apr;6(4):126–131. doi: 10.1016/0168-9525(90)90127-r. [DOI] [PubMed] [Google Scholar]
  23. Goode M. D. Ultrastructure and contractile properties of isolated myofibrils and myofilaments from drosophila flight muscle. Trans Am Microsc Soc. 1972 Apr;91(2):182–194. [PubMed] [Google Scholar]
  24. Holtzer A. Phenomenological analysis of the kinetics of the production of interchain disulfide cross-links in two-chain, coiled-coil proteins by reaction with 5,5'-dithiobis(2-nitrobenzoate). Biochemistry. 1986 May 20;25(10):3008–3012. doi: 10.1021/bi00358a041. [DOI] [PubMed] [Google Scholar]
  25. Kagawa H., Gengyo K., McLachlan A. D., Brenner S., Karn J. Paramyosin gene (unc-15) of Caenorhabditis elegans. Molecular cloning, nucleotide sequence and models for thick filament structure. J Mol Biol. 1989 May 20;207(2):311–333. doi: 10.1016/0022-2836(89)90257-x. [DOI] [PubMed] [Google Scholar]
  26. Kronert W. A., O'Donnell P. T., Fieck A., Lawn A., Vigoreaux J. O., Sparrow J. C., Bernstein S. I. Defects in the Drosophila myosin rod permit sarcomere assembly but cause flight muscle degeneration. J Mol Biol. 1995 May 26;249(1):111–125. doi: 10.1006/jmbi.1995.0283. [DOI] [PubMed] [Google Scholar]
  27. Lakey A., Ferguson C., Labeit S., Reedy M., Larkins A., Butcher G., Leonard K., Bullard B. Identification and localization of high molecular weight proteins in insect flight and leg muscle. EMBO J. 1990 Nov;9(11):3459–3467. doi: 10.1002/j.1460-2075.1990.tb07554.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Levine R. J., Elfvin M., Dewey M. M., Walcott B. Paramyosin in invertebrate muscles. II. Content in relation to structure and function. J Cell Biol. 1976 Oct;71(1):273–279. doi: 10.1083/jcb.71.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Maroto M., Arredondo J. J., San Román M., Marco R., Cervera M. Analysis of the paramyosin/miniparamyosin gene. Miniparamyosin is an independently transcribed, distinct paramyosin isoform, widely distributed in invertebrates. J Biol Chem. 1995 Mar 3;270(9):4375–4382. doi: 10.1074/jbc.270.9.4375. [DOI] [PubMed] [Google Scholar]
  30. Maroto M., Vinós J., Marco R., Cervera M. Autophosphorylating protein kinase activity in titin-like arthropod projectin. J Mol Biol. 1992 Mar 20;224(2):287–291. doi: 10.1016/0022-2836(92)90994-u. [DOI] [PubMed] [Google Scholar]
  31. McLachlan A. D., Karn J. Periodic features in the amino acid sequence of nematode myosin rod. J Mol Biol. 1983 Mar 15;164(4):605–626. doi: 10.1016/0022-2836(83)90053-0. [DOI] [PubMed] [Google Scholar]
  32. Mogami K., Fujita S. C., Hotta Y. Identification of Drosophila indirect flight muscle myofibrillar proteins by means of two-dimensional electrophoresis. J Biochem. 1982 Feb;91(2):643–650. doi: 10.1093/oxfordjournals.jbchem.a133736. [DOI] [PubMed] [Google Scholar]
  33. Patel N. H., Snow P. M., Goodman C. S. Characterization and cloning of fasciclin III: a glycoprotein expressed on a subset of neurons and axon pathways in Drosophila. Cell. 1987 Mar 27;48(6):975–988. doi: 10.1016/0092-8674(87)90706-9. [DOI] [PubMed] [Google Scholar]
  34. Peckham M., Molloy J. E., Sparrow J. C., White D. C. Physiological properties of the dorsal longitudinal flight muscle and the tergal depressor of the trochanter muscle of Drosophila melanogaster. J Muscle Res Cell Motil. 1990 Jun;11(3):203–215. doi: 10.1007/BF01843574. [DOI] [PubMed] [Google Scholar]
  35. Pringle J. W. The Croonian Lecture, 1977. Stretch activation of muscle: function and mechanism. Proc R Soc Lond B Biol Sci. 1978 May 5;201(1143):107–130. doi: 10.1098/rspb.1978.0035. [DOI] [PubMed] [Google Scholar]
  36. Saide J. D., Chin-Bow S., Hogan-Sheldon J., Busquets-Turner L., Vigoreaux J. O., Valgeirsdottir K., Pardue M. L. Characterization of components of Z-bands in the fibrillar flight muscle of Drosophila melanogaster. J Cell Biol. 1989 Nov;109(5):2157–2167. doi: 10.1083/jcb.109.5.2157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schriefer L. A., Waterson R. H. Phosphorylation of the N-terminal region of Caenorhabditis elegans paramyosin. J Mol Biol. 1989 May 20;207(2):451–454. doi: 10.1016/0022-2836(89)90267-2. [DOI] [PubMed] [Google Scholar]
  38. Smith C. W., Patton J. G., Nadal-Ginard B. Alternative splicing in the control of gene expression. Annu Rev Genet. 1989;23:527–577. doi: 10.1146/annurev.ge.23.120189.002523. [DOI] [PubMed] [Google Scholar]
  39. Sparrow J. C. Muscle. Flight and phosphorylation. Nature. 1995 Apr 13;374(6523):592–593. doi: 10.1038/374592a0. [DOI] [PubMed] [Google Scholar]
  40. Squire J. M. Muscle filament lattices and stretch-activation: the match-mismatch model reassessed. J Muscle Res Cell Motil. 1992 Apr;13(2):183–189. doi: 10.1007/BF01874155. [DOI] [PubMed] [Google Scholar]
  41. Tohtong R., Yamashita H., Graham M., Haeberle J., Simcox A., Maughan D. Impairment of muscle function caused by mutations of phosphorylation sites in myosin regulatory light chain. Nature. 1995 Apr 13;374(6523):650–653. doi: 10.1038/374650a0. [DOI] [PubMed] [Google Scholar]
  42. Tokuyasu K. T. Use of poly(vinylpyrrolidone) and poly(vinyl alcohol) for cryoultramicrotomy. Histochem J. 1989 Mar;21(3):163–171. doi: 10.1007/BF01007491. [DOI] [PubMed] [Google Scholar]
  43. Trinick J. Molecular rulers in muscle? Curr Biol. 1992 Feb;2(2):75–77. doi: 10.1016/0960-9822(92)90206-p. [DOI] [PubMed] [Google Scholar]
  44. Vigoreaux J. O., Perry L. M. Multiple isoelectric variants of flightin in Drosophila stretch-activated muscles are generated by temporally regulated phosphorylations. J Muscle Res Cell Motil. 1994 Dec;15(6):607–616. doi: 10.1007/BF00121068. [DOI] [PubMed] [Google Scholar]
  45. Vigoreaux J. O., Saide J. D., Valgeirsdottir K., Pardue M. L. Flightin, a novel myofibrillar protein of Drosophila stretch-activated muscles. J Cell Biol. 1993 May;121(3):587–598. doi: 10.1083/jcb.121.3.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vinós J., Domingo A., Marco R., Cervera M. Identification and characterization of Drosophila melanogaster paramyosin. J Mol Biol. 1991 Aug 5;220(3):687–700. doi: 10.1016/0022-2836(91)90110-r. [DOI] [PubMed] [Google Scholar]
  47. Vinós J., Maroto M., Garesse R., Marco R., Cervera M. Drosophila melanogaster paramyosin: developmental pattern, mapping and properties deduced from its complete coding sequence. Mol Gen Genet. 1992 Feb;231(3):385–394. doi: 10.1007/BF00292707. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES