Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Jul 1;134(1):67–80. doi: 10.1083/jcb.134.1.67

A function for filamentous alpha-smooth muscle actin: retardation of motility in fibroblasts

PMCID: PMC2120928  PMID: 8698823

Abstract

Actins are known to comprise six mammalian isoforms of which beta- and gamma-nonmuscle actins are present in all cells, whereas alpha-smooth muscle (alpha-sm) actin is normally restricted to cells of the smooth muscle lineages. alpha-Sm actin has been found also to be expressed transiently in certain nonmuscle cells, in particular fibroblasts, which are referred to as myofibroblasts. The functional significance of alpha-sm actin in fibroblasts is unknown. However, myofibroblasts appear to play a prominent role in stromal reaction in breast cancer, at the site of wound repair, and in fibrotic reactions. Here, we show that the presence of alpha-sm actin is a signal for retardation of migratory behavior in fibroblasts. Comparison in a migration assay of fibroblast cell strains with and without alpha-sm actin revealed migratory restraint in alpha-sm actin-positive fibroblasts. Electroporation of monoclonal antibody (mAb) 1A4, which recognizes specifically the NH2-terminal Ac-EEED sequence of alpha-sm actin, significantly increased the frequency of migrating cells over that obtained with an unrelated antibody or a mAb against beta-actin. Time- lapse video microscopy revealed migratory rates of 4.8 and 3.0 microns/h, respectively. To knock out the alpha-sm actin protein, several antisense phosphorothioate oligodeoxynucleotide (ODNs) were tested. One of these, 3'UTI, which is complementary to a highly evolutionary conserved 3' untranslated (3'UT) sequence of alpha-sm actin mRNA, was found to block alpha-sm actin synthesis completely without affecting the synthesis of any other proteins as analyzed by two-dimensional gel electrophoresis. Targeting by antisense 3'UTI significantly increased motility compared with the corresponding sense ODN. alpha-Sm actin inhibition also led to the formation of less prominent focal adhesions as revealed by immunofluorescence staining against vinculin, talin, and beta1-integrin. We propose that an important function of filamentous alpha-sm actin is to immobilize the cells.

Full Text

The Full Text of this article is available as a PDF (4.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktories K., Bärmann M., Ohishi I., Tsuyama S., Jakobs K. H., Habermann E. Botulinum C2 toxin ADP-ribosylates actin. Nature. 1986 Jul 24;322(6077):390–392. doi: 10.1038/322390a0. [DOI] [PubMed] [Google Scholar]
  2. Arora P. D., McCulloch C. A. Dependence of collagen remodelling on alpha-smooth muscle actin expression by fibroblasts. J Cell Physiol. 1994 Apr;159(1):161–175. doi: 10.1002/jcp.1041590120. [DOI] [PubMed] [Google Scholar]
  3. Barja F., Coughlin C., Belin D., Gabbiani G. Actin isoform synthesis and mRNA levels in quiescent and proliferating rat aortic smooth muscle cells in vivo and in vitro. Lab Invest. 1986 Aug;55(2):226–233. [PubMed] [Google Scholar]
  4. Barrett T. B., Benditt E. P. Platelet-derived growth factor gene expression in human atherosclerotic plaques and normal artery wall. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2810–2814. doi: 10.1073/pnas.85.8.2810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bershadsky A. D., Glück U., Denisenko O. N., Sklyarova T. V., Spector I., Ben-Ze'ev A. The state of actin assembly regulates actin and vinculin expression by a feedback loop. J Cell Sci. 1995 Mar;108(Pt 3):1183–1193. doi: 10.1242/jcs.108.3.1183. [DOI] [PubMed] [Google Scholar]
  6. Betz E., Fallier-Becker P., Wolburg-Buchholz K., Fotev Z. Proliferation of smooth muscle cells in the inner and outer layers of the tunica media of arteries: an in vitro study. J Cell Physiol. 1991 Jun;147(3):385–395. doi: 10.1002/jcp.1041470302. [DOI] [PubMed] [Google Scholar]
  7. Brouty-Boyé D., Raux H., Azzarone B., Tamboise A., Tamboise E., Béranger S., Magnien V., Pihan I., Zardi L., Israël L. Fetal myofibroblast-like cells isolated from post-radiation fibrosis in human breast cancer. Int J Cancer. 1991 Mar 12;47(5):697–702. doi: 10.1002/ijc.2910470512. [DOI] [PubMed] [Google Scholar]
  8. Celis J. E., Gesser B., Rasmussen H. H., Madsen P., Leffers H., Dejgaard K., Honore B., Olsen E., Ratz G., Lauridsen J. B. Comprehensive two-dimensional gel protein databases offer a global approach to the analysis of human cells: the transformed amnion cells (AMA) master database and its link to genome DNA sequence data. Electrophoresis. 1990 Dec;11(12):989–1071. doi: 10.1002/elps.1150111202. [DOI] [PubMed] [Google Scholar]
  9. Chaponnier C., Goethals M., Janmey P. A., Gabbiani F., Gabbiani G., Vandekerckhove J. The specific NH2-terminal sequence Ac-EEED of alpha-smooth muscle actin plays a role in polymerization in vitro and in vivo. J Cell Biol. 1995 Aug;130(4):887–895. doi: 10.1083/jcb.130.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chiang M. Y., Chan H., Zounes M. A., Freier S. M., Lima W. F., Bennett C. F. Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem. 1991 Sep 25;266(27):18162–18171. [PubMed] [Google Scholar]
  11. Cintorino M., Bellizzi de Marco E., Leoncini P., Tripodi S. A., Xu L. J., Sappino A. P., Schmitt-Gräff A., Gabbiani G. Expression of alpha-smooth-muscle actin in stromal cells of the uterine cervix during epithelial neoplastic changes. Int J Cancer. 1991 Apr 1;47(6):843–846. doi: 10.1002/ijc.2910470609. [DOI] [PubMed] [Google Scholar]
  12. Darby I., Skalli O., Gabbiani G. Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest. 1990 Jul;63(1):21–29. [PubMed] [Google Scholar]
  13. DeNofrio D., Hoock T. C., Herman I. M. Functional sorting of actin isoforms in microvascular pericytes. J Cell Biol. 1989 Jul;109(1):191–202. doi: 10.1083/jcb.109.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Desmoulière A., Geinoz A., Gabbiani F., Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993 Jul;122(1):103–111. doi: 10.1083/jcb.122.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Desmoulière A., Rubbia-Brandt L., Abdiu A., Walz T., Macieira-Coelho A., Gabbiani G. Alpha-smooth muscle actin is expressed in a subpopulation of cultured and cloned fibroblasts and is modulated by gamma-interferon. Exp Cell Res. 1992 Jul;201(1):64–73. doi: 10.1016/0014-4827(92)90348-c. [DOI] [PubMed] [Google Scholar]
  16. DiMilla P. A., Stone J. A., Quinn J. A., Albelda S. M., Lauffenburger D. A. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J Cell Biol. 1993 Aug;122(3):729–737. doi: 10.1083/jcb.122.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Duband J. L., Belkin A. M., Syfrig J., Thiery J. P., Koteliansky V. E. Expression of alpha 1 integrin, a laminin-collagen receptor, during myogenesis and neurogenesis in the avian embryo. Development. 1992 Nov;116(3):585–600. doi: 10.1242/dev.116.3.585. [DOI] [PubMed] [Google Scholar]
  18. Dunlevy J. R., Couchman J. R. Controlled induction of focal adhesion disassembly and migration in primary fibroblasts. J Cell Sci. 1993 Jun;105(Pt 2):489–500. doi: 10.1242/jcs.105.2.489. [DOI] [PubMed] [Google Scholar]
  19. Eddy R. J., Petro J. A., Tomasek J. J. Evidence for the nonmuscle nature of the "myofibroblast" of granulation tissue and hypertropic scar. An immunofluorescence study. Am J Pathol. 1988 Feb;130(2):252–260. [PMC free article] [PubMed] [Google Scholar]
  20. Garrels J. I., Gibson W. Identification and characterization of multiple forms of actin. Cell. 1976 Dec;9(4 Pt 2):793–805. doi: 10.1016/0092-8674(76)90142-2. [DOI] [PubMed] [Google Scholar]
  21. Gimona M., Vandekerckhove J., Goethals M., Herzog M., Lando Z., Small J. V. Beta-actin specific monoclonal antibody. Cell Motil Cytoskeleton. 1994;27(2):108–116. doi: 10.1002/cm.970270203. [DOI] [PubMed] [Google Scholar]
  22. Giulian G. G., Moss R. L., Greaser M. Analytical isoelectric focusing using a high-voltage vertical slab polyacrylamide gel system. Anal Biochem. 1984 Nov 1;142(2):421–436. doi: 10.1016/0003-2697(84)90486-x. [DOI] [PubMed] [Google Scholar]
  23. Glogauer M., McCulloch C. A. Introduction of large molecules into viable fibroblasts by electroporation: optimization of loading and identification of labeled cellular compartments. Exp Cell Res. 1992 Jun;200(2):227–234. doi: 10.1016/0014-4827(92)90168-8. [DOI] [PubMed] [Google Scholar]
  24. Herman I. M. Actin isoforms. Curr Opin Cell Biol. 1993 Feb;5(1):48–55. doi: 10.1016/s0955-0674(05)80007-9. [DOI] [PubMed] [Google Scholar]
  25. Herman I. M., Crisona N. J., Pollard T. D. Relation between cell activity and the distribution of cytoplasmic actin and myosin. J Cell Biol. 1981 Jul;90(1):84–91. doi: 10.1083/jcb.90.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Higgins P. J., Kopelovich L. Analysis of actin microfilaments and cell-to-substrate adhesive structures in human fibroblasts from individuals genetically predisposed to colonic carcinoma. Exp Cell Res. 1991 Aug;195(2):395–400. doi: 10.1016/0014-4827(91)90389-c. [DOI] [PubMed] [Google Scholar]
  27. Horiba K., Fukuda Y. Synchronous appearance of fibronectin, integrin alpha 5 beta 1, vinculin and actin in epithelial cells and fibroblasts during rat tracheal wound healing. Virchows Arch. 1994;425(4):425–434. doi: 10.1007/BF00189581. [DOI] [PubMed] [Google Scholar]
  28. Hug C., Jay P. Y., Reddy I., McNally J. G., Bridgman P. C., Elson E. L., Cooper J. A. Capping protein levels influence actin assembly and cell motility in dictyostelium. Cell. 1995 May 19;81(4):591–600. doi: 10.1016/0092-8674(95)90080-2. [DOI] [PubMed] [Google Scholar]
  29. Jockusch B. M., Füchtbauer A. Organization and function of structural elements in focal contacts of tissue culture cells. Cell Motil. 1983;3(5-6):391–397. doi: 10.1002/cm.970030507. [DOI] [PubMed] [Google Scholar]
  30. Kamada S., Kakunaga T. The nucleotide sequence of a human smooth muscle alpha-actin (aortic type) cDNA. Nucleic Acids Res. 1989 Feb 25;17(4):1767–1767. doi: 10.1093/nar/17.4.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kamada S., Nakano Y., Kakunaga T. Structure of 3'-downstream segment of the human smooth muscle (aortic-type) alpha-actin-encoding gene and isolation of the specific DNA probe. Gene. 1989 Dec 14;84(2):455–462. doi: 10.1016/0378-1119(89)90520-9. [DOI] [PubMed] [Google Scholar]
  32. Kislauskis E. H., Li Z., Singer R. H., Taneja K. L. Isoform-specific 3'-untranslated sequences sort alpha-cardiac and beta-cytoplasmic actin messenger RNAs to different cytoplasmic compartments. J Cell Biol. 1993 Oct;123(1):165–172. doi: 10.1083/jcb.123.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kislauskis E. H., Zhu X., Singer R. H. Sequences responsible for intracellular localization of beta-actin messenger RNA also affect cell phenotype. J Cell Biol. 1994 Oct;127(2):441–451. doi: 10.1083/jcb.127.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Leavitt J., Gunning P., Kedes L., Jariwalla R. Smooth muscle alpha-action is a transformation-sensitive marker for mouse NIH 3T3 and Rat-2 cells. 1985 Aug 29-Sep 4Nature. 316(6031):840–842. doi: 10.1038/316840a0. [DOI] [PubMed] [Google Scholar]
  35. Lukas J., Pagano M., Staskova Z., Draetta G., Bartek J. Cyclin D1 protein oscillates and is essential for cell cycle progression in human tumour cell lines. Oncogene. 1994 Mar;9(3):707–718. [PubMed] [Google Scholar]
  36. Luna E. J., Hitt A. L. Cytoskeleton--plasma membrane interactions. Science. 1992 Nov 6;258(5084):955–964. doi: 10.1126/science.1439807. [DOI] [PubMed] [Google Scholar]
  37. Mitchell J., Woodcock-Mitchell J., Reynolds S., Low R., Leslie K., Adler K., Gabbiani G., Skalli O. Alpha-smooth muscle actin in parenchymal cells of bleomycin-injured rat lung. Lab Invest. 1989 May;60(5):643–650. [PubMed] [Google Scholar]
  38. Ochiya T., Sakamoto H., Tsukamoto M., Sugimura T., Terada M. Hst-1 (FGF-4) antisense oligonucleotides block murine limb development. J Cell Biol. 1995 Aug;130(4):997–1003. doi: 10.1083/jcb.130.4.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Okamoto-Inoue M., Taniguchi S., Sadano H., Kawano T., Kimura G., Gabbiani G., Baba T. Alteration in expression of smooth muscle alpha-actin associated with transformation of rat 3Y1 cells. J Cell Sci. 1990 Aug;96(Pt 4):631–637. doi: 10.1242/jcs.96.4.631. [DOI] [PubMed] [Google Scholar]
  40. Owens G. K. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev. 1995 Jul;75(3):487–517. doi: 10.1152/physrev.1995.75.3.487. [DOI] [PubMed] [Google Scholar]
  41. Owens G. K., Thompson M. M. Developmental changes in isoactin expression in rat aortic smooth muscle cells in vivo. Relationship between growth and cytodifferentiation. J Biol Chem. 1986 Oct 5;261(28):13373–13380. [PubMed] [Google Scholar]
  42. Pascolini R., Di Rosa I., Fagotti A., Panara F., Gabbiani G. The mammalian anti-alpha-smooth muscle actin monoclonal antibody recognizes an alpha-actin-like protein in planaria (Dugesia lugubris s.l.). Differentiation. 1992 Nov;51(3):177–186. doi: 10.1111/j.1432-0436.1992.tb00694.x. [DOI] [PubMed] [Google Scholar]
  43. Peng I., Fischman D. A. Post-translational incorporation of actin into myofibrils in vitro: evidence for isoform specificity. Cell Motil Cytoskeleton. 1991;20(2):158–168. doi: 10.1002/cm.970200208. [DOI] [PubMed] [Google Scholar]
  44. Petersen O. W., van Deurs B. Preservation of defined phenotypic traits in short-term cultured human breast carcinoma derived epithelial cells. Cancer Res. 1987 Feb 1;47(3):856–866. [PubMed] [Google Scholar]
  45. Pokorná E., Jordan P. W., O'Neill C. H., Zicha D., Gilbert C. S., Veselý P. Actin cytoskeleton and motility in rat sarcoma cell populations with different metastatic potential. Cell Motil Cytoskeleton. 1994;28(1):25–33. doi: 10.1002/cm.970280103. [DOI] [PubMed] [Google Scholar]
  46. Ponte P., Gunning P., Blau H., Kedes L. Human actin genes are single copy for alpha-skeletal and alpha-cardiac actin but multicopy for beta- and gamma-cytoskeletal genes: 3' untranslated regions are isotype specific but are conserved in evolution. Mol Cell Biol. 1983 Oct;3(10):1783–1791. doi: 10.1128/mcb.3.10.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rodríguez Fernández J. L., Geiger B., Salomon D., Ben-Ze'ev A. Overexpression of vinculin suppresses cell motility in BALB/c 3T3 cells. Cell Motil Cytoskeleton. 1992;22(2):127–134. doi: 10.1002/cm.970220206. [DOI] [PubMed] [Google Scholar]
  48. Rodríguez Fernández J. L., Geiger B., Salomon D., Ben-Ze'ev A. Suppression of vinculin expression by antisense transfection confers changes in cell morphology, motility, and anchorage-dependent growth of 3T3 cells. J Cell Biol. 1993 Sep;122(6):1285–1294. doi: 10.1083/jcb.122.6.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Rønnov-Jessen L., Celis J. E., Van Deurs B., Petersen O. W. A fibroblast-associated antigen: characterization in fibroblasts and immunoreactivity in smooth muscle differentiated stromal cells. J Histochem Cytochem. 1992 Apr;40(4):475–486. doi: 10.1177/40.4.1552184. [DOI] [PubMed] [Google Scholar]
  50. Rønnov-Jessen L., Petersen O. W., Bissell M. J. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev. 1996 Jan;76(1):69–125. doi: 10.1152/physrev.1996.76.1.69. [DOI] [PubMed] [Google Scholar]
  51. Rønnov-Jessen L., Petersen O. W. Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest. 1993 Jun;68(6):696–707. [PubMed] [Google Scholar]
  52. Rønnov-Jessen L., Petersen O. W., Koteliansky V. E., Bissell M. J. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest. 1995 Feb;95(2):859–873. doi: 10.1172/JCI117736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Rønnov-Jessen L., Van Deurs B., Nielsen M., Petersen O. W. Identification, paracrine generation, and possible function of human breast carcinoma myofibroblasts in culture. In Vitro Cell Dev Biol. 1992 Apr;28A(4):273–283. doi: 10.1007/BF02634244. [DOI] [PubMed] [Google Scholar]
  54. Rønnov-Jessen L., van Deurs B., Celis J. E., Petersen O. W. Smooth muscle differentiation in cultured human breast gland stromal cells. Lab Invest. 1990 Oct;63(4):532–543. [PubMed] [Google Scholar]
  55. Sappino A. P., Masouyé I., Saurat J. H., Gabbiani G. Smooth muscle differentiation in scleroderma fibroblastic cells. Am J Pathol. 1990 Sep;137(3):585–591. [PMC free article] [PubMed] [Google Scholar]
  56. Sappino A. P., Skalli O., Jackson B., Schürch W., Gabbiani G. Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. Int J Cancer. 1988 May 15;41(5):707–712. doi: 10.1002/ijc.2910410512. [DOI] [PubMed] [Google Scholar]
  57. Schevzov G., Lloyd C., Gunning P. Impact of altered actin gene expression on vinculin, talin, cell spreading, and motility. DNA Cell Biol. 1995 Aug;14(8):689–700. doi: 10.1089/dna.1995.14.689. [DOI] [PubMed] [Google Scholar]
  58. Schmitt-Gräff A., Pau H., Spahr R., Piper H. M., Skalli O., Gabbiani G. Appearance of alpha-smooth muscle actin in human eye lens cells of anterior capsular cataract and in cultured bovine lens-forming cells. Differentiation. 1990 Apr;43(2):115–122. doi: 10.1111/j.1432-0436.1990.tb00437.x. [DOI] [PubMed] [Google Scholar]
  59. Shimokawa-Kuroki R., Sadano H., Taniguchi S. A variant actin (beta m) reduces metastasis of mouse B16 melanoma. Int J Cancer. 1994 Mar 1;56(5):689–697. doi: 10.1002/ijc.2910560514. [DOI] [PubMed] [Google Scholar]
  60. Skalli O., Gabbiani F., Gabbiani G. Action of general and alpha-smooth muscle-specific actin antibody microinjection on stress fibers of cultured smooth muscle cells. Exp Cell Res. 1990 Mar;187(1):119–125. doi: 10.1016/0014-4827(90)90125-t. [DOI] [PubMed] [Google Scholar]
  61. Skalli O., Ropraz P., Trzeciak A., Benzonana G., Gillessen D., Gabbiani G. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol. 1986 Dec;103(6 Pt 2):2787–2796. doi: 10.1083/jcb.103.6.2787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Skalli O., Vandekerckhove J., Gabbiani G. Actin-isoform pattern as a marker of normal or pathological smooth-muscle and fibroblastic tissues. Differentiation. 1987;33(3):232–238. doi: 10.1111/j.1432-0436.1987.tb01562.x. [DOI] [PubMed] [Google Scholar]
  63. Small J. V., Rohlfs A., Herzog M. Actin and cell movement. Symp Soc Exp Biol. 1993;47:57–71. [PubMed] [Google Scholar]
  64. Stoflet E. S., Schmidt L. J., Elder P. K., Korf G. M., Foster D. N., Strauch A. R., Getz M. J. Activation of a muscle-specific actin gene promoter in serum-stimulated fibroblasts. Mol Biol Cell. 1992 Oct;3(10):1073–1083. doi: 10.1091/mbc.3.10.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Stracke M. L., Aznavoorian S. A., Beckner M. E., Liotta L. A., Schiffmann E. Cell motility, a principal requirement for metastasis. EXS. 1991;59:147–162. doi: 10.1007/978-3-0348-7494-6_10. [DOI] [PubMed] [Google Scholar]
  66. Teichman-Weinberg A., Littauer U. Z., Ginzburg I. The inhibition of neurite outgrowth in PC12 cells by tubulin antisense oligodeoxyribonucleotides. Gene. 1988 Dec 10;72(1-2):297–307. doi: 10.1016/0378-1119(88)90155-2. [DOI] [PubMed] [Google Scholar]
  67. Thomas L. A., Yamada K. M. Contact stimulation of cell migration. J Cell Sci. 1992 Dec;103(Pt 4):1211–1214. doi: 10.1242/jcs.103.4.1211. [DOI] [PubMed] [Google Scholar]
  68. Troy C. M., Greene L. A., Shelanski M. L. Neurite outgrowth in peripherin-depleted PC12 cells. J Cell Biol. 1992 Jun;117(5):1085–1092. doi: 10.1083/jcb.117.5.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Vandekerckhove J., Weber K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol. 1978 Dec 25;126(4):783–802. doi: 10.1016/0022-2836(78)90020-7. [DOI] [PubMed] [Google Scholar]
  70. Vandekerckhove J., Weber K. The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle. A protein-chemical analysis of muscle actin differentiation. Differentiation. 1979;14(3):123–133. doi: 10.1111/j.1432-0436.1979.tb01021.x. [DOI] [PubMed] [Google Scholar]
  71. Varnum-Finney B., Reichardt L. F. Vinculin-deficient PC12 cell lines extend unstable lamellipodia and filopodia and have a reduced rate of neurite outgrowth. J Cell Biol. 1994 Nov;127(4):1071–1084. doi: 10.1083/jcb.127.4.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Weber K. T., Sun Y., Katwa L. C., Cleutjens J. P. Connective tissue: a metabolic entity? . J Mol Cell Cardiol. 1995 Jan;27(1):107–120. doi: 10.1016/s0022-2828(08)80011-9. [DOI] [PubMed] [Google Scholar]
  73. Wilson A. K., Gorgas G., Claypool W. D., de Lanerolle P. An increase or a decrease in myosin II phosphorylation inhibits macrophage motility. J Cell Biol. 1991 Jul;114(2):277–283. doi: 10.1083/jcb.114.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Woolf T. M., Jennings C. G., Rebagliati M., Melton D. A. The stability, toxicity and effectiveness of unmodified and phosphorothioate antisense oligodeoxynucleotides in Xenopus oocytes and embryos. Nucleic Acids Res. 1990 Apr 11;18(7):1763–1769. doi: 10.1093/nar/18.7.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. von Arx P., Bantle S., Soldati T., Perriard J. C. Dominant negative effect of cytoplasmic actin isoproteins on cardiomyocyte cytoarchitecture and function. J Cell Biol. 1995 Dec;131(6 Pt 2):1759–1773. doi: 10.1083/jcb.131.6.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES