Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Aug 2;134(4):1051–1062. doi: 10.1083/jcb.134.4.1051

A novel calmodulin-binding protein, belonging to the WD-repeat family, is localized in dendrites of a subset of CNS neurons

PMCID: PMC2120968  PMID: 8769426

Abstract

A rat brain synaptosomal protein of 110,000 M(r) present in a fraction highly enriched in adenylyl cyclase activity was microsequenced (Castets, F., G. Baillat, S. Mirzoeva, K. Mabrouk, J. Garin, J. d'Alayer, and A. Monneron. 1994. Biochemistry. 33:5063-5069). Peptide sequences were used to clone a cDNA encoding a novel, 780-amino acid protein named striatin. Striatin is a member of the WD-repeat family (Neer, E.J., C.J. Schmidt, R. Nambudripad, and T.F. Smith. 1994. Nature (Lond.). 371:297-300), the first one known to bind calmodulin (CaM) in the presence of Ca++. Subcellular fractionation shows that striatin is a membrane-associated, Lubrol-soluble protein. As analyzed by Northern blots, in situ hybridization, and immunocytochemistry, striatin is localized in the central nervous system, where it is confined to a subset of neurons, many of which are associated with the motor system. In particular, striatin is conspicuous in the dorsal part of the striatum, as well as in motoneurons. Furthermore, striatin is essentially found in dendrites, but not in axons, and is most abundant in dendritic spines. We propose that striatin interacts, through its WD- repeat domain and in a CaM/Ca(++)-dependent manner, with one or several members of a surrounding cluster of molecules engaged in a Ca(++)- signaling pathway specific to excitatory synapses.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akers R. F., Lovinger D. M., Colley P. A., Linden D. J., Routtenberg A. Translocation of protein kinase C activity may mediate hippocampal long-term potentiation. Science. 1986 Feb 7;231(4738):587–589. doi: 10.1126/science.3003904. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Auffray C., Rougeon F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem. 1980 Jun;107(2):303–314. doi: 10.1111/j.1432-1033.1980.tb06030.x. [DOI] [PubMed] [Google Scholar]
  4. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burns M. E., Augustine G. J. Synaptic structure and function: dynamic organization yields architectural precision. Cell. 1995 Oct 20;83(2):187–194. doi: 10.1016/0092-8674(95)90160-4. [DOI] [PubMed] [Google Scholar]
  6. Castets F., Baillat G., Mirzoeva S., Mabrouk K., Garin J., d'Alayer J., Monneron A. A brain synaptosomal adenylyl cyclase of high specific activity is photolabeled with azido-ATP. Biochemistry. 1994 May 3;33(17):5063–5069. doi: 10.1021/bi00183a009. [DOI] [PubMed] [Google Scholar]
  7. Cohen R. S., Blomberg F., Berzins K., Siekevitz P. The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J Cell Biol. 1977 Jul;74(1):181–203. doi: 10.1083/jcb.74.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cooper D. M., Mons N., Karpen J. W. Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature. 1995 Mar 30;374(6521):421–424. doi: 10.1038/374421a0. [DOI] [PubMed] [Google Scholar]
  9. Coussen F., Haiech J., d'Alayer J., Monneron A. Identification of the catalytic subunit of brain adenylate cyclase: a calmodulin binding protein of 135 kDa. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6736–6740. doi: 10.1073/pnas.82.20.6736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Finkbeiner S., Greenberg M. E. Ca(2+)-dependent routes to Ras: mechanisms for neuronal survival, differentiation, and plasticity? Neuron. 1996 Feb;16(2):233–236. doi: 10.1016/s0896-6273(00)80040-9. [DOI] [PubMed] [Google Scholar]
  11. Garoff H., Ansorge W. Improvements of DNA sequencing gels. Anal Biochem. 1981 Aug;115(2):450–457. doi: 10.1016/0003-2697(81)90031-2. [DOI] [PubMed] [Google Scholar]
  12. Glaser P., Ladant D., Sezer O., Pichot F., Ullmann A., Danchin A. The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. Mol Microbiol. 1988 Jan;2(1):19–30. [PubMed] [Google Scholar]
  13. Glatt C. E., Snyder S. H. Cloning and expression of an adenylyl cyclase localized to the corpus striatum. Nature. 1993 Feb 11;361(6412):536–538. doi: 10.1038/361536a0. [DOI] [PubMed] [Google Scholar]
  14. Goto S., Matsukado Y., Miyamoto E., Yamada M. Morphological characterization of the rat striatal neurons expressing calcineurin immunoreactivity. Neuroscience. 1987 Jul;22(1):189–201. doi: 10.1016/0306-4522(87)90209-0. [DOI] [PubMed] [Google Scholar]
  15. Hervé D., Lévi-Strauss M., Marey-Semper I., Verney C., Tassin J. P., Glowinski J., Girault J. A. G(olf) and Gs in rat basal ganglia: possible involvement of G(olf) in the coupling of dopamine D1 receptor with adenylyl cyclase. J Neurosci. 1993 May;13(5):2237–2248. doi: 10.1523/JNEUROSCI.13-05-02237.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kennedy M. B. The postsynaptic density. Curr Opin Neurobiol. 1993 Oct;3(5):732–737. doi: 10.1016/0959-4388(93)90145-o. [DOI] [PubMed] [Google Scholar]
  17. Kim J., Mosior M., Chung L. A., Wu H., McLaughlin S. Binding of peptides with basic residues to membranes containing acidic phospholipids. Biophys J. 1991 Jul;60(1):135–148. doi: 10.1016/S0006-3495(91)82037-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  19. Ludvig N., Burmeister V., Jobe P. C., Kincaid R. L. Electron microscopic immunocytochemical evidence that the calmodulin-dependent cyclic nucleotide phosphodiesterase is localized predominantly at postsynaptic sites in the rat brain. Neuroscience. 1991;44(2):491–500. doi: 10.1016/0306-4522(91)90072-v. [DOI] [PubMed] [Google Scholar]
  20. Mendel-Hartvig I. B. A simple and rapid method for the isolation of peptides from sodium dodecyl sulfate-containing polyacrylamide gels. Anal Biochem. 1982 Mar 15;121(1):215–217. doi: 10.1016/0003-2697(82)90579-6. [DOI] [PubMed] [Google Scholar]
  21. Monneron A., d'Alayer J. Effects of crosslinking agents on adenylate cyclase regulation. FEBS Lett. 1980 Jan 1;109(1):75–80. doi: 10.1016/0014-5793(80)81315-9. [DOI] [PubMed] [Google Scholar]
  22. Mons N., Cooper D. M. Adenylate cyclases: critical foci in neuronal signaling. Trends Neurosci. 1995 Dec;18(12):536–542. doi: 10.1016/0166-2236(95)98375-9. [DOI] [PubMed] [Google Scholar]
  23. Mons N., Harry A., Dubourg P., Premont R. T., Iyengar R., Cooper D. M. Immunohistochemical localization of adenylyl cyclase in rat brain indicates a highly selective concentration at synapses. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8473–8477. doi: 10.1073/pnas.92.18.8473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Muro Y., Chan E. K., Landberg G., Tan E. M. A cell-cycle nuclear autoantigen containing WD-40 motifs expressed mainly in S and G2 phase cells. Biochem Biophys Res Commun. 1995 Feb 27;207(3):1029–1037. doi: 10.1006/bbrc.1995.1288. [DOI] [PubMed] [Google Scholar]
  25. Neer E. J., Schmidt C. J., Nambudripad R., Smith T. F. The ancient regulatory-protein family of WD-repeat proteins. Nature. 1994 Sep 22;371(6495):297–300. doi: 10.1038/371297a0. [DOI] [PubMed] [Google Scholar]
  26. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  27. Orlando C., d'Alayer J., Baillat G., Castets F., Jeannequin O., Mazié J. C., Monneron A. A monoclonal antibody directed against the catalytic site of Bacillus anthracis adenylyl cyclase identifies a novel mammalian brain catalytic subunit. Biochemistry. 1992 Mar 31;31(12):3215–3222. doi: 10.1021/bi00127a024. [DOI] [PubMed] [Google Scholar]
  28. Penin F., Godinot C., Gautheron D. C. Two-dimensional gel electrophoresis of membrane proteins using anionic and cationic detergents. Application to the study of mitochondrial F0-F1-ATPase. Biochim Biophys Acta. 1984 Aug 22;775(2):239–245. doi: 10.1016/0005-2736(84)90175-5. [DOI] [PubMed] [Google Scholar]
  29. Pryer N. K., Salama N. R., Schekman R., Kaiser C. A. Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulum in vitro. J Cell Biol. 1993 Feb;120(4):865–875. doi: 10.1083/jcb.120.4.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Regehr W. G., Tank D. W. Dendritic calcium dynamics. Curr Opin Neurobiol. 1994 Jun;4(3):373–382. doi: 10.1016/0959-4388(94)90099-x. [DOI] [PubMed] [Google Scholar]
  31. Remaut E., Stanssens P., Fiers W. Plasmid vectors for high-efficiency expression controlled by the PL promoter of coliphage lambda. Gene. 1981 Oct;15(1):81–93. doi: 10.1016/0378-1119(81)90106-2. [DOI] [PubMed] [Google Scholar]
  32. Rose J. K., Buonocore L., Whitt M. A. A new cationic liposome reagent mediating nearly quantitative transfection of animal cells. Biotechniques. 1991 Apr;10(4):520–525. [PubMed] [Google Scholar]
  33. Rychlik W., Rhoads R. E. A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA. Nucleic Acids Res. 1989 Nov 11;17(21):8543–8551. doi: 10.1093/nar/17.21.8543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Salin P., Chesselet M. F. Expression of GAD (M(r) 67,000) and its messenger RNA in basal ganglia and cerebral cortex after ischemic cortical lesions in rats. Exp Neurol. 1993 Feb;119(2):291–301. doi: 10.1006/exnr.1993.1033. [DOI] [PubMed] [Google Scholar]
  35. Salomon Y. Cellular responsiveness to hormones and neurotransmitters: conversion of [3H]adenine to [3H]cAMP in cell monolayers, cell suspensions, and tissue slices. Methods Enzymol. 1991;195:22–28. doi: 10.1016/0076-6879(91)95151-9. [DOI] [PubMed] [Google Scholar]
  36. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  37. Segal M. Dendritic spines for neuroprotection: a hypothesis. Trends Neurosci. 1995 Nov;18(11):468–471. doi: 10.1016/0166-2236(95)92765-i. [DOI] [PubMed] [Google Scholar]
  38. Sutcliffe J. G. mRNA in the mammalian central nervous system. Annu Rev Neurosci. 1988;11:157–198. doi: 10.1146/annurev.ne.11.030188.001105. [DOI] [PubMed] [Google Scholar]
  39. Trimble W. S., Linial M., Scheller R. H. Cellular and molecular biology of the presynaptic nerve terminal. Annu Rev Neurosci. 1991;14:93–122. doi: 10.1146/annurev.ne.14.030191.000521. [DOI] [PubMed] [Google Scholar]
  40. Watson J. B., Coulter P. M., 2nd, Margulies J. E., de Lecea L., Danielson P. E., Erlander M. G., Sutcliffe J. G. G-protein gamma 7 subunit is selectively expressed in medium-sized neurons and dendrites of the rat neostriatum. J Neurosci Res. 1994 Sep 1;39(1):108–116. doi: 10.1002/jnr.490390113. [DOI] [PubMed] [Google Scholar]
  41. Yuste R., Denk W. Dendritic spines as basic functional units of neuronal integration. Nature. 1995 Jun 22;375(6533):682–684. doi: 10.1038/375682a0. [DOI] [PubMed] [Google Scholar]
  42. d'Alayer J., Berthillier G., Monneron A. Structure of brain adenylate cyclase: proteolysis-dependent modifications. Biochemistry. 1983 Aug 2;22(16):3948–3953. doi: 10.1021/bi00285a034. [DOI] [PubMed] [Google Scholar]
  43. de Hostos E. L., Bradtke B., Lottspeich F., Guggenheim R., Gerisch G. Coronin, an actin binding protein of Dictyostelium discoideum localized to cell surface projections, has sequence similarities to G protein beta subunits. EMBO J. 1991 Dec;10(13):4097–4104. doi: 10.1002/j.1460-2075.1991.tb04986.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES