Abstract
To identify genes regulated during skeletal muscle differentiation, we have infected mouse C2C12 myoblasts with retroviral gene trap vectors, containing a promoterless marker gene with a 5' splice acceptor signal. Integration of the vector adjacent to an actively transcribed gene places the marker under the transcriptional control of the endogenous gene, while the adjacent vector sequences facilitate cloning. The vector insertionally mutates the trapped locus and may also form fusion proteins with the endogenous gene product. We have screened several hundred clones, each containing a trapping vector integrated into a different endogenous gene. In agreement with previous estimates based on hybridization kinetics, we find that a large proportion of all genes expressed in myoblasts are regulated during differentiation. Many of these genes undergo unique temporal patterns of activation or repression during cell growth and myotube formation, and some show specific patterns of subcellular localization. The first gene we have identified with this strategy is the lysosomal cysteine protease cathepsin B. Expression from the trapped allele is upregulated during early myoblast fusion and downregulated in myotubes. A direct role for cathepsin B in myoblast growth and fusion is suggested by the observation that the trapped cells deficient in cathepsin B activity have an unusual morphology and reduced survival in low-serum media and undergo differentiation with impaired cellular fusion. The phenotype is reproduced by antisense cathepsin B expression in parental C2C12 myoblasts. The cellular phenotype is similar to that observed in cultured myoblasts from patients with I cell disease, in which there is diminished accumulation of lysosomal enzymes. This suggests that a specific deficiency of cathepsin B could contribute to the myopathic component of this illness.
Full Text
The Full Text of this article is available as a PDF (7.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrett A. J., Kirschke H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 1981;80(Pt 100):535–561. doi: 10.1016/s0076-6879(81)80043-2. [DOI] [PubMed] [Google Scholar]
- Bertioli D. J., Schlichter U. H., Adams M. J., Burrows P. R., Steinbiss H. H., Antoniw J. F. An analysis of differential display shows a strong bias towards high copy number mRNAs. Nucleic Acids Res. 1995 Nov 11;23(21):4520–4523. doi: 10.1093/nar/23.21.4520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Béchet D. M., Ferrara M. J., Mordier S. B., Roux M. P., Deval C. D., Obled A. Expression of lysosomal cathepsin B during calf myoblast-myotube differentiation. Characterization of a cDNA encoding bovine cathepsin B. J Biol Chem. 1991 Jul 25;266(21):14104–14112. [PubMed] [Google Scholar]
- Campo E., Muñoz J., Miquel R., Palacín A., Cardesa A., Sloane B. F., Emmert-Buck M. R. Cathepsin B expression in colorectal carcinomas correlates with tumor progression and shortened patient survival. Am J Pathol. 1994 Aug;145(2):301–309. [PMC free article] [PubMed] [Google Scholar]
- Chan S. J., San Segundo B., McCormick M. B., Steiner D. F. Nucleotide and predicted amino acid sequences of cloned human and mouse preprocathepsin B cDNAs. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7721–7725. doi: 10.1073/pnas.83.20.7721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Z., Friedrich G. A., Soriano P. Transcriptional enhancer factor 1 disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev. 1994 Oct 1;8(19):2293–2301. doi: 10.1101/gad.8.19.2293. [DOI] [PubMed] [Google Scholar]
- Couch C. B., Strittmatter W. J. Rat myoblast fusion requires metalloendoprotease activity. Cell. 1983 Jan;32(1):257–265. doi: 10.1016/0092-8674(83)90516-0. [DOI] [PubMed] [Google Scholar]
- Davis R. L., Weintraub H., Lassar A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 Dec 24;51(6):987–1000. doi: 10.1016/0092-8674(87)90585-x. [DOI] [PubMed] [Google Scholar]
- DeGregori J., Russ A., von Melchner H., Rayburn H., Priyaranjan P., Jenkins N. A., Copeland N. G., Ruley H. E. A murine homolog of the yeast RNA1 gene is required for postimplantation development. Genes Dev. 1994 Feb 1;8(3):265–276. doi: 10.1101/gad.8.3.265. [DOI] [PubMed] [Google Scholar]
- Friedrich G., Soriano P. Insertional mutagenesis by retroviruses and promoter traps in embryonic stem cells. Methods Enzymol. 1993;225:681–701. doi: 10.1016/0076-6879(93)25044-3. [DOI] [PubMed] [Google Scholar]
- Friedrich G., Soriano P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 1991 Sep;5(9):1513–1523. doi: 10.1101/gad.5.9.1513. [DOI] [PubMed] [Google Scholar]
- Jane D. T., Dufresne M. J. Expression and regulation of three lysosomal cysteine protease activities during growth of a differentiating L6 rat myoblast cell line and its nonfusing variant. Biochem Cell Biol. 1994 Jul-Aug;72(7-8):267–274. doi: 10.1139/o94-038. [DOI] [PubMed] [Google Scholar]
- Kirschke H., Wood L., Roisen F. J., Bird J. W. Activity of lysosomal cysteine proteinase during differentiation of rat skeletal muscle. Biochem J. 1983 Sep 15;214(3):871–877. doi: 10.1042/bj2140871. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kopitz J., Arnold A., Meissner T., Cantz M. Protein catabolism in fibroblasts cultured from patients with mucolipidosis II and other lysosomal disorders. Biochem J. 1993 Oct 15;295(Pt 2):577–580. doi: 10.1042/bj2950577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kula R. W., Shafiq S. A., Sher J. H., Qazi Q. H. I-cell disease (mucolipidosis II). Differential expression in satellite cells and mature muscle fibers. J Neurol Sci. 1984 Jan;63(1):75–84. doi: 10.1016/0022-510x(84)90110-2. [DOI] [PubMed] [Google Scholar]
- Leibovitch M. P., Leibovitch S. A., Harel J., Kruh J. Changes in the frequency and diversity of messenger RNA populations in the course of myogenic differentiation. Eur J Biochem. 1979 Jul;97(2):321–326. doi: 10.1111/j.1432-1033.1979.tb13117.x. [DOI] [PubMed] [Google Scholar]
- Moin K., Day N. A., Sameni M., Hasnain S., Hirama T., Sloane B. F. Human tumour cathepsin B. Comparison with normal liver cathepsin B. Biochem J. 1992 Jul 15;285(Pt 2):427–434. doi: 10.1042/bj2850427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neufeld E. F. Lysosomal storage diseases. Annu Rev Biochem. 1991;60:257–280. doi: 10.1146/annurev.bi.60.070191.001353. [DOI] [PubMed] [Google Scholar]
- Ormerod M. G., Collins M. K., Rodriguez-Tarduchy G., Robertson D. Apoptosis in interleukin-3-dependent haemopoietic cells. Quantification by two flow cytometric methods. J Immunol Methods. 1992 Aug 30;153(1-2):57–65. doi: 10.1016/0022-1759(92)90305-d. [DOI] [PubMed] [Google Scholar]
- Pellicciari C., Manfredi A. A., Bottone M. G., Schaack V., Barni S. A single-step staining procedure for the detection and sorting of unfixed apoptotic thymocytes. Eur J Histochem. 1993;37(4):381–390. [PubMed] [Google Scholar]
- Qian L., Murakami T., Kimura Y., Takahashi M., Okita K. Saikosaponin A-induced cell death of a human hepatoma cell line (HuH-7): the significance of the 'sub-G1 peak' in a DNA histogram. Pathol Int. 1995 Mar;45(3):207–214. doi: 10.1111/j.1440-1827.1995.tb03444.x. [DOI] [PubMed] [Google Scholar]
- Rhaissi H., Béchet D., Ferrara M. Multiple leader sequences for mouse cathepsin B mRNA? Biochimie. 1993;75(10):899–904. doi: 10.1016/0300-9084(93)90046-u. [DOI] [PubMed] [Google Scholar]
- Richard I., Broux O., Allamand V., Fougerousse F., Chiannilkulchai N., Bourg N., Brenguier L., Devaud C., Pasturaud P., Roudaut C. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell. 1995 Apr 7;81(1):27–40. doi: 10.1016/0092-8674(95)90368-2. [DOI] [PubMed] [Google Scholar]
- Rupp R. A., Snider L., Weintraub H. Xenopus embryos regulate the nuclear localization of XMyoD. Genes Dev. 1994 Jun 1;8(11):1311–1323. doi: 10.1101/gad.8.11.1311. [DOI] [PubMed] [Google Scholar]
- Schmid I., Uittenbogaart C. H., Giorgi J. V. Sensitive method for measuring apoptosis and cell surface phenotype in human thymocytes by flow cytometry. Cytometry. 1994 Jan 1;15(1):12–20. doi: 10.1002/cyto.990150104. [DOI] [PubMed] [Google Scholar]
- Shanske S., Miranda A. F., Penn A. S., DiMauro S. Mucolipidosis II (I-cell disease): studies of muscle biopsy and muscle cultures. Pediatr Res. 1981 Oct;15(10):1334–1339. doi: 10.1203/00006450-198110000-00006. [DOI] [PubMed] [Google Scholar]
- Siminovitch L. On the nature of hereditable variation in cultured somatic cells. Cell. 1976 Jan;7(1):1–11. doi: 10.1016/0092-8674(76)90249-x. [DOI] [PubMed] [Google Scholar]
- Skarnes W. C., Moss J. E., Hurtley S. M., Beddington R. S. Capturing genes encoding membrane and secreted proteins important for mouse development. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6592–6596. doi: 10.1073/pnas.92.14.6592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sloane B. F., Moin K., Sameni M., Tait L. R., Rozhin J., Ziegler G. Membrane association of cathepsin B can be induced by transfection of human breast epithelial cells with c-Ha-ras oncogene. J Cell Sci. 1994 Feb;107(Pt 2):373–384. doi: 10.1242/jcs.107.2.373. [DOI] [PubMed] [Google Scholar]
- Tounekti O., Belehradek J., Jr, Mir L. M. Relationships between DNA fragmentation, chromatin condensation, and changes in flow cytometry profiles detected during apoptosis. Exp Cell Res. 1995 Apr;217(2):506–516. doi: 10.1006/excr.1995.1116. [DOI] [PubMed] [Google Scholar]
- Turner D. L., Weintraub H. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 1994 Jun 15;8(12):1434–1447. doi: 10.1101/gad.8.12.1434. [DOI] [PubMed] [Google Scholar]
- Vindeløv L. L., Christensen I. J., Nissen N. I. A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry. 1983 Mar;3(5):323–327. doi: 10.1002/cyto.990030503. [DOI] [PubMed] [Google Scholar]
- Wurst W., Rossant J., Prideaux V., Kownacka M., Joyner A., Hill D. P., Guillemot F., Gasca S., Cado D., Auerbach A. A large-scale gene-trap screen for insertional mutations in developmentally regulated genes in mice. Genetics. 1995 Feb;139(2):889–899. doi: 10.1093/genetics/139.2.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yagami-Hiromasa T., Sato T., Kurisaki T., Kamijo K., Nabeshima Y., Fujisawa-Sehara A. A metalloprotease-disintegrin participating in myoblast fusion. Nature. 1995 Oct 19;377(6550):652–656. doi: 10.1038/377652a0. [DOI] [PubMed] [Google Scholar]
- van Lohuizen M., Verbeek S., Scheijen B., Wientjens E., van der Gulden H., Berns A. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell. 1991 May 31;65(5):737–752. doi: 10.1016/0092-8674(91)90382-9. [DOI] [PubMed] [Google Scholar]