Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Sep 1;134(5):1209–1218. doi: 10.1083/jcb.134.5.1209

Coordination of protrusion and translocation of the keratocyte involves rolling of the cell body

PMCID: PMC2120980  PMID: 8794862

Abstract

We have investigated the relationship between lamellipodium protrusion and forward translocation of the cell body in the rapidly moving keratocyte. It is first shown that the trailing, ellipsoidal cell body rotates during translocation. This was indicated by the rotation of the nucleus and the movement of cytoplasmic organelles, as well as of exogenously added beads used as markers. Activated or Con A-coated fluorescent beads that were overrun by cells were commonly endocytosed and rotated with the internal organelles. Alternatively, beads applied to the rear of the cell body via a micropipette adhered to the dorsal cell surface and also moved forward, indicating that both exterior and underlying cortical elements participated in rotation. Manipulation of keratocytes with microneedles demonstrated that pushing or restraining the cell body in the direction of locomotion, and squeezing it against the substrate, which temporarily increased the intracellular pressure, did not effect the rate of lamellipodium protrusion. Rotation and translocation of the cell body continued momentarily after arrest of lamellipodium protrusion by cytochalasin B, indicating that these processes were not directly dependent on actin polymerization. The cell body was commonly flanked by phase-dense "axles," extending from the cell body into the lamellipodium. Phalloidin staining showed these to be comprised of actin bundles that splayed forward into the flanks of the lamellipodium. Disruption of the bundles on one side of the nucleus by traumatic microinjection resulted in rapid retraction of the cell body in the opposite direction, indicating that the cell body was under lateral contractile stress. Myosin II, which colocalizes with the actin bundles, presumably provides the basis of tension generation across and traction of the cell body. We propose that the basis of coupling between lamellipodium protrusion and translocation of the cell body is a flow of actin filaments from the front, where they are nucleated and engage in protrusion, to the rear, where they collaborate with myosin in contraction. Myosin-dependent force is presumably transmitted from the ends of the cell body into the flanks of the lamellipodium via the actin bundles. This force induces the spindle-shaped cell body to roll between the axles that are created continuously from filaments supplied by the advancing lamellipodium.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie M., Dunn G. A. Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. Exp Cell Res. 1975 Apr;92(1):57–62. doi: 10.1016/0014-4827(75)90636-9. [DOI] [PubMed] [Google Scholar]
  2. Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Exp Cell Res. 1971 Aug;67(2):359–367. doi: 10.1016/0014-4827(71)90420-4. [DOI] [PubMed] [Google Scholar]
  3. Bereiter-Hahn J., Strohmeier R., Kunzenbacher I., Beck K., Vöth M. Locomotion of Xenopus epidermis cells in primary culture. J Cell Sci. 1981 Dec;52:289–311. doi: 10.1242/jcs.52.1.289. [DOI] [PubMed] [Google Scholar]
  4. Bray D., White J. G. Cortical flow in animal cells. Science. 1988 Feb 19;239(4842):883–888. doi: 10.1126/science.3277283. [DOI] [PubMed] [Google Scholar]
  5. Chen W. T. Mechanism of retraction of the trailing edge during fibroblast movement. J Cell Biol. 1981 Jul;90(1):187–200. doi: 10.1083/jcb.90.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Euteneuer U., Schliwa M. Persistent, directional motility of cells and cytoplasmic fragments in the absence of microtubules. Nature. 1984 Jul 5;310(5972):58–61. doi: 10.1038/310058a0. [DOI] [PubMed] [Google Scholar]
  7. Fukui Y., De Lozanne A., Spudich J. A. Structure and function of the cytoskeleton of a Dictyostelium myosin-defective mutant. J Cell Biol. 1990 Feb;110(2):367–378. doi: 10.1083/jcb.110.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fukui Y., Lynch T. J., Brzeska H., Korn E. D. Myosin I is located at the leading edges of locomoting Dictyostelium amoebae. Nature. 1989 Sep 28;341(6240):328–331. doi: 10.1038/341328a0. [DOI] [PubMed] [Google Scholar]
  9. Fukui Y. Toward a new concept of cell motility: cytoskeletal dynamics in amoeboid movement and cell division. Int Rev Cytol. 1993;144:85–127. doi: 10.1016/s0074-7696(08)61514-4. [DOI] [PubMed] [Google Scholar]
  10. Heath J. P., Holifield B. F. On the mechanisms of cortical actin flow and its role in cytoskeletal organisation of fibroblasts. Symp Soc Exp Biol. 1993;47:35–56. [PubMed] [Google Scholar]
  11. Heath J., Holifield B. Cell locomotion. Actin alone in lamellipodia. Nature. 1991 Jul 11;352(6331):107–108. doi: 10.1038/352107a0. [DOI] [PubMed] [Google Scholar]
  12. Izzard C. S., Lochner L. R. Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J Cell Sci. 1976 Jun;21(1):129–159. doi: 10.1242/jcs.21.1.129. [DOI] [PubMed] [Google Scholar]
  13. Jay P. Y., Pham P. A., Wong S. A., Elson E. L. A mechanical function of myosin II in cell motility. J Cell Sci. 1995 Jan;108(Pt 1):387–393. doi: 10.1242/jcs.108.1.387. [DOI] [PubMed] [Google Scholar]
  14. King C. A., Preston T. M., Miller R. H., Donovan P. Cell-substrate interactions during amoeboid locomotion of neutrophil leukocytes. Exp Cell Res. 1980 Apr;126(2):453–458. doi: 10.1016/0014-4827(80)90286-4. [DOI] [PubMed] [Google Scholar]
  15. Kucik D. F., Elson E. L., Sheetz M. P. Cell migration does not produce membrane flow. J Cell Biol. 1990 Oct;111(4):1617–1622. doi: 10.1083/jcb.111.4.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kucik D. F., Elson E. L., Sheetz M. P. Forward transport of glycoproteins on leading lamellipodia in locomoting cells. Nature. 1989 Jul 27;340(6231):315–317. doi: 10.1038/340315a0. [DOI] [PubMed] [Google Scholar]
  17. Lee J., Ishihara A., Theriot J. A., Jacobson K. Principles of locomotion for simple-shaped cells. Nature. 1993 Mar 11;362(6416):167–171. doi: 10.1038/362167a0. [DOI] [PubMed] [Google Scholar]
  18. Lee J., Leonard M., Oliver T., Ishihara A., Jacobson K. Traction forces generated by locomoting keratocytes. J Cell Biol. 1994 Dec;127(6 Pt 2):1957–1964. doi: 10.1083/jcb.127.6.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mitchison T., Kirschner M. Cytoskeletal dynamics and nerve growth. Neuron. 1988 Nov;1(9):761–772. doi: 10.1016/0896-6273(88)90124-9. [DOI] [PubMed] [Google Scholar]
  20. Sheetz M. P. Cell migration by graded attachment to substrates and contraction. Semin Cell Biol. 1994 Jun;5(3):149–155. doi: 10.1006/scel.1994.1019. [DOI] [PubMed] [Google Scholar]
  21. Small J. V. Getting the actin filaments straight: nucleation-release or treadmilling? Trends Cell Biol. 1995 Feb;5(2):52–55. doi: 10.1016/s0962-8924(00)88939-4. [DOI] [PubMed] [Google Scholar]
  22. Small J. V., Herzog M., Anderson K. Actin filament organization in the fish keratocyte lamellipodium. J Cell Biol. 1995 Jun;129(5):1275–1286. doi: 10.1083/jcb.129.5.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Small J. V. Lamellipodia architecture: actin filament turnover and the lateral flow of actin filaments during motility. Semin Cell Biol. 1994 Jun;5(3):157–163. doi: 10.1006/scel.1994.1020. [DOI] [PubMed] [Google Scholar]
  24. Small J. V. Microfilament-based motility in non-muscle cells. Curr Opin Cell Biol. 1989 Feb;1(1):75–79. doi: 10.1016/s0955-0674(89)80040-7. [DOI] [PubMed] [Google Scholar]
  25. Small J. V., Rohlfs A., Herzog M. Actin and cell movement. Symp Soc Exp Biol. 1993;47:57–71. [PubMed] [Google Scholar]
  26. Smith S. J. Neuronal cytomechanics: the actin-based motility of growth cones. Science. 1988 Nov 4;242(4879):708–715. doi: 10.1126/science.3055292. [DOI] [PubMed] [Google Scholar]
  27. Theriot J. A., Mitchison T. J. Actin microfilament dynamics in locomoting cells. Nature. 1991 Jul 11;352(6331):126–131. doi: 10.1038/352126a0. [DOI] [PubMed] [Google Scholar]
  28. Theriot J. A., Mitchison T. J. Comparison of actin and cell surface dynamics in motile fibroblasts. J Cell Biol. 1992 Oct;119(2):367–377. doi: 10.1083/jcb.119.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Zigmond S. H. Recent quantitative studies of actin filament turnover during cell locomotion. Cell Motil Cytoskeleton. 1993;25(4):309–316. doi: 10.1002/cm.970250402. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES