Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Sep 1;134(5):1197–1207. doi: 10.1083/jcb.134.5.1197

Talin and vinculin play distinct roles in filopodial motility in the neuronal growth cone

PMCID: PMC2120982  PMID: 8794861

Abstract

Filopodial motility is critical for many biological processes, particularly for axon guidance. This motility is based on altering the F-actin-based cytoskeleton, but the mechanisms of how this occurs and the actin-associated proteins that function in this process remain unclear. We investigated two of these proteins found in filopodia, talin and vinculin, by inactivating them in subregions of chick dorsal root ganglia neuronal growth cones and by observing subsequent behavior by video-enhanced microscopy and quantitative morphometry. Microscale chromophore-assisted laser inactivation of talin resulted in the temporary cessation of filopodial extension and retraction. Inactivation of vinculin caused an increased incidence of filopodial bending and buckling within the laser spot but had no effect on extension or retraction. These findings show that talin acts in filopodial motility and may couple both extension and retraction to actin dynamics. They also suggest that vinculin is not required for filopodial extension and retraction but plays a role in the structural integrity of filopodia.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atashi J. R., Klinz S. G., Ingraham C. A., Matten W. T., Schachner M., Maness P. F. Neural cell adhesion molecules modulate tyrosine phosphorylation of tubulin in nerve growth cone membranes. Neuron. 1992 May;8(5):831–842. doi: 10.1016/0896-6273(92)90197-l. [DOI] [PubMed] [Google Scholar]
  2. Beermann A. E., Jay D. G. Chromophore-assisted laser inactivation of cellular proteins. Methods Cell Biol. 1994;44:715–732. doi: 10.1016/s0091-679x(08)60940-1. [DOI] [PubMed] [Google Scholar]
  3. Bentley D., Toroian-Raymond A. Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment. Nature. 1986 Oct 23;323(6090):712–715. doi: 10.1038/323712a0. [DOI] [PubMed] [Google Scholar]
  4. Borasio G. D., John J., Wittinghofer A., Barde Y. A., Sendtner M., Heumann R. ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons. Neuron. 1989 Jan;2(1):1087–1096. doi: 10.1016/0896-6273(89)90233-x. [DOI] [PubMed] [Google Scholar]
  5. Bray D. Mechanical tension produced by nerve cells in tissue culture. J Cell Sci. 1979 Jun;37:391–410. doi: 10.1242/jcs.37.1.391. [DOI] [PubMed] [Google Scholar]
  6. Burridge K., Fath K., Kelly T., Nuckolls G., Turner C. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol. 1988;4:487–525. doi: 10.1146/annurev.cb.04.110188.002415. [DOI] [PubMed] [Google Scholar]
  7. Burridge K., Mangeat P. An interaction between vinculin and talin. Nature. 1984 Apr 19;308(5961):744–746. doi: 10.1038/308744a0. [DOI] [PubMed] [Google Scholar]
  8. Chang H. Y., Takei K., Sydor A. M., Born T., Rusnak F., Jay D. G. Asymmetric retraction of growth cone filopodia following focal inactivation of calcineurin. Nature. 1995 Aug 24;376(6542):686–690. doi: 10.1038/376686a0. [DOI] [PubMed] [Google Scholar]
  9. Chien C. B., Rosenthal D. E., Harris W. A., Holt C. E. Navigational errors made by growth cones without filopodia in the embryonic Xenopus brain. Neuron. 1993 Aug;11(2):237–251. doi: 10.1016/0896-6273(93)90181-p. [DOI] [PubMed] [Google Scholar]
  10. Clarke M. S., McNeil P. L. Syringe loading introduces macromolecules into living mammalian cell cytosol. J Cell Sci. 1992 Jul;102(Pt 3):533–541. doi: 10.1242/jcs.102.3.533. [DOI] [PubMed] [Google Scholar]
  11. Diamond P., Mallavarapu A., Schnipper J., Booth J., Park L., O'Connor T. P., Jay D. G. Fasciclin I and II have distinct roles in the development of grasshopper pioneer neurons. Neuron. 1993 Sep;11(3):409–421. doi: 10.1016/0896-6273(93)90146-i. [DOI] [PubMed] [Google Scholar]
  12. Dubreuil R., Byers T. J., Branton D., Goldstein L. S., Kiehart D. P. Drosophilia spectrin. I. Characterization of the purified protein. J Cell Biol. 1987 Nov;105(5):2095–2102. doi: 10.1083/jcb.105.5.2095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Forscher P., Smith S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol. 1988 Oct;107(4):1505–1516. doi: 10.1083/jcb.107.4.1505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gilmore A. P., Wood C., Ohanian V., Jackson P., Patel B., Rees D. J., Hynes R. O., Critchley D. R. The cytoskeletal protein talin contains at least two distinct vinculin binding domains. J Cell Biol. 1993 Jul;122(2):337–347. doi: 10.1083/jcb.122.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Horwitz A., Duggan K., Buck C., Beckerle M. C., Burridge K. Interaction of plasma membrane fibronectin receptor with talin--a transmembrane linkage. Nature. 1986 Apr 10;320(6062):531–533. doi: 10.1038/320531a0. [DOI] [PubMed] [Google Scholar]
  16. Jay D. G., Keshishian H. Laser inactivation of fasciclin I disrupts axon adhesion of grasshopper pioneer neurons. Nature. 1990 Dec 6;348(6301):548–550. doi: 10.1038/348548a0. [DOI] [PubMed] [Google Scholar]
  17. Jay D. G. Selective destruction of protein function by chromophore-assisted laser inactivation. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5454–5458. doi: 10.1073/pnas.85.15.5454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnson R. P., Craig S. W. F-actin binding site masked by the intramolecular association of vinculin head and tail domains. Nature. 1995 Jan 19;373(6511):261–264. doi: 10.1038/373261a0. [DOI] [PubMed] [Google Scholar]
  19. Letourneau P. C. Differences in the organization of actin in the growth cones compared with the neurites of cultured neurons from chick embryos. J Cell Biol. 1983 Oct;97(4):963–973. doi: 10.1083/jcb.97.4.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Letourneau P. C., Shattuck T. A. Distribution and possible interactions of actin-associated proteins and cell adhesion molecules of nerve growth cones. Development. 1989 Mar;105(3):505–519. doi: 10.1242/dev.105.3.505. [DOI] [PubMed] [Google Scholar]
  21. Liao J. C., Berg L. J., Jay D. G. Chromophore-assisted laser inactivation of subunits of the T-cell receptor in living cells is spatially restricted. Photochem Photobiol. 1995 Nov;62(5):923–929. doi: 10.1111/j.1751-1097.1995.tb09157.x. [DOI] [PubMed] [Google Scholar]
  22. Liao J. C., Roider J., Jay D. G. Chromophore-assisted laser inactivation of proteins is mediated by the photogeneration of free radicals. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2659–2663. doi: 10.1073/pnas.91.7.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Linden K. G., Liao J. C., Jay D. G. Spatial specificity of chromophore assisted laser inactivation of protein function. Biophys J. 1992 Apr;61(4):956–962. doi: 10.1016/S0006-3495(92)81902-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Marsh L., Letourneau P. C. Growth of neurites without filopodial or lamellipodial activity in the presence of cytochalasin B. J Cell Biol. 1984 Dec;99(6):2041–2047. doi: 10.1083/jcb.99.6.2041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mitchison T., Kirschner M. Cytoskeletal dynamics and nerve growth. Neuron. 1988 Nov;1(9):761–772. doi: 10.1016/0896-6273(88)90124-9. [DOI] [PubMed] [Google Scholar]
  26. Molony L., McCaslin D., Abernethy J., Paschal B., Burridge K. Properties of talin from chicken gizzard smooth muscle. J Biol Chem. 1987 Jun 5;262(16):7790–7795. [PubMed] [Google Scholar]
  27. Nuckolls G. H., Romer L. H., Burridge K. Microinjection of antibodies against talin inhibits the spreading and migration of fibroblasts. J Cell Sci. 1992 Aug;102(Pt 4):753–762. doi: 10.1242/jcs.102.4.753. [DOI] [PubMed] [Google Scholar]
  28. O'Connor T. P., Duerr J. S., Bentley D. Pioneer growth cone steering decisions mediated by single filopodial contacts in situ. J Neurosci. 1990 Dec;10(12):3935–3946. doi: 10.1523/JNEUROSCI.10-12-03935.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oster G. F., Perelson A. S. The physics of cell motility. J Cell Sci Suppl. 1987;8:35–54. doi: 10.1242/jcs.1987.supplement_8.3. [DOI] [PubMed] [Google Scholar]
  30. Otey C., Griffiths W., Burridge K. Characterization of monoclonal antibodies to chicken gizzard talin. Hybridoma. 1990 Feb;9(1):57–62. doi: 10.1089/hyb.1990.9.57. [DOI] [PubMed] [Google Scholar]
  31. Rivas R. J., Burmeister D. W., Goldberg D. J. Rapid effects of laminin on the growth cone. Neuron. 1992 Jan;8(1):107–115. doi: 10.1016/0896-6273(92)90112-q. [DOI] [PubMed] [Google Scholar]
  32. Rodríguez Fernández J. L., Geiger B., Salomon D., Ben-Ze'ev A. Overexpression of vinculin suppresses cell motility in BALB/c 3T3 cells. Cell Motil Cytoskeleton. 1992;22(2):127–134. doi: 10.1002/cm.970220206. [DOI] [PubMed] [Google Scholar]
  33. Rodríguez Fernández J. L., Geiger B., Salomon D., Ben-Ze'ev A. Suppression of vinculin expression by antisense transfection confers changes in cell morphology, motility, and anchorage-dependent growth of 3T3 cells. J Cell Biol. 1993 Sep;122(6):1285–1294. doi: 10.1083/jcb.122.6.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Samuels M., Ezzell R. M., Cardozo T. J., Critchley D. R., Coll J. L., Adamson E. D. Expression of chicken vinculin complements the adhesion-defective phenotype of a mutant mouse F9 embryonal carcinoma cell. J Cell Biol. 1993 May;121(4):909–921. doi: 10.1083/jcb.121.4.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Samuelsson S. J., Luther P. W., Pumplin D. W., Bloch R. J. Structures linking microfilament bundles to the membrane at focal contacts. J Cell Biol. 1993 Jul;122(2):485–496. doi: 10.1083/jcb.122.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schmidt C. E., Horwitz A. F., Lauffenburger D. A., Sheetz M. P. Integrin-cytoskeletal interactions in migrating fibroblasts are dynamic, asymmetric, and regulated. J Cell Biol. 1993 Nov;123(4):977–991. doi: 10.1083/jcb.123.4.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sheetz M. P., Wayne D. B., Pearlman A. L. Extension of filopodia by motor-dependent actin assembly. Cell Motil Cytoskeleton. 1992;22(3):160–169. doi: 10.1002/cm.970220303. [DOI] [PubMed] [Google Scholar]
  38. Stossel T. P. On the crawling of animal cells. Science. 1993 May 21;260(5111):1086–1094. doi: 10.1126/science.8493552. [DOI] [PubMed] [Google Scholar]
  39. Tapley P., Horwitz A., Buck C., Duggan K., Rohrschneider L. Integrins isolated from Rous sarcoma virus-transformed chicken embryo fibroblasts. Oncogene. 1989 Mar;4(3):325–333. [PubMed] [Google Scholar]
  40. Varnum-Finney B., Reichardt L. F. Vinculin-deficient PC12 cell lines extend unstable lamellipodia and filopodia and have a reduced rate of neurite outgrowth. J Cell Biol. 1994 Nov;127(4):1071–1084. doi: 10.1083/jcb.127.4.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wachsstock D. H., Wilkins J. A., Lin S. Specific interaction of vinculin with alpha-actinin. Biochem Biophys Res Commun. 1987 Jul 31;146(2):554–560. doi: 10.1016/0006-291x(87)90564-x. [DOI] [PubMed] [Google Scholar]
  42. Westmeyer A., Ruhnau K., Wegner A., Jockusch B. M. Antibody mapping of functional domains in vinculin. EMBO J. 1990 Jul;9(7):2071–2078. doi: 10.1002/j.1460-2075.1990.tb07374.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yamada K. M., Spooner B. S., Wessells N. K. Axon growth: roles of microfilaments and microtubules. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1206–1212. doi: 10.1073/pnas.66.4.1206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zheng J. Q., Wan J. J., Poo M. M. Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. J Neurosci. 1996 Feb 1;16(3):1140–1149. doi: 10.1523/JNEUROSCI.16-03-01140.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES