Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Sep 2;134(6):1427–1439. doi: 10.1083/jcb.134.6.1427

Fc epsilon RI-mediated association of 6-micron beads with RBL-2H3 mast cells results in exclusion of signaling proteins from the forming phagosome and abrogation of normal downstream signaling

PMCID: PMC2121002  PMID: 8830772

Abstract

Cells of the mucosal mast cell line, RBL-2H3, are normally stimulated to degranulate after aggregation of high affinity receptors for IgE (Fc epsilon RI) by soluble cross-linking ligands. This cellular degranulation process requires sustained elevation of cytoplasmic Ca2+. In this study, we investigated the response of RBL-2H3 cells to 6- micron beads coated with IgE-specific ligands. These ligand-coated beads cause only small, transient Ca2+ responses, even though the same ligands added in soluble form cause larger, more sustained Ca2+ responses. The ligand-coated 6-micron beads also fail to stimulate significant degranulation of RBL-2H3 cells, whereas much larger ligand- coated Sepharose beads stimulate ample degranulation. Confocal fluorescence microscopy shows that the 6-micron beads (but not the Sepharose beads) are phagocytosed by RBL-2H3 cells and that, beginning with the initial stages of bead engulfment, there is exclusion of many plasma membrane components from the 6-micron bead/cell interface, including p53/56lyn and several other markers for detergent-resistant membrane domains, as well as an integrin and unliganded IgE-Fc epsilon RI. The fluorescent lipid probe DiIC16 is a marker for the membrane domains that is excluded from the cell/bead interface, whereas a structural analogue, fast DiI, which differs from DiIC16 by the presence of unsaturated acyl chains, is not substantially excluded from the interface. None of these components are excluded from the interface of RBL-2H3 cells and the large Sepharose beads. Additional confocal microscopy analysis indicates that microfilaments are involved in the exclusion of plasma membrane components from the cell/bead interface. These results suggest that initiation of phagocytosis diverts normal signaling pathways in a cytoskeleton-driven membrane clearance process that alters the physiological response of the cells.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen L. H., Aderem A. A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J Exp Med. 1995 Sep 1;182(3):829–840. doi: 10.1084/jem.182.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson R. G. Plasmalemmal caveolae and GPI-anchored membrane proteins. Curr Opin Cell Biol. 1993 Aug;5(4):647–652. doi: 10.1016/0955-0674(93)90135-d. [DOI] [PubMed] [Google Scholar]
  3. Barsumian E. L., Isersky C., Petrino M. G., Siraganian R. P. IgE-induced histamine release from rat basophilic leukemia cell lines: isolation of releasing and nonreleasing clones. Eur J Immunol. 1981 Apr;11(4):317–323. doi: 10.1002/eji.1830110410. [DOI] [PubMed] [Google Scholar]
  4. Basciano L. K., Berenstein E. H., Kmak L., Siraganian R. P. Monoclonal antibodies that inhibit IgE binding. J Biol Chem. 1986 Sep 5;261(25):11823–11831. [PubMed] [Google Scholar]
  5. Beaven M. A., Metzger H. Signal transduction by Fc receptors: the Fc epsilon RI case. Immunol Today. 1993 May;14(5):222–226. doi: 10.1016/0167-5699(93)90167-j. [DOI] [PubMed] [Google Scholar]
  6. Benhamou M., Ryba N. J., Kihara H., Nishikata H., Siraganian R. P. Protein-tyrosine kinase p72syk in high affinity IgE receptor signaling. Identification as a component of pp72 and association with the receptor gamma chain after receptor aggregation. J Biol Chem. 1993 Nov 5;268(31):23318–23324. [PubMed] [Google Scholar]
  7. Blank U., Ra C., Miller L., White K., Metzger H., Kinet J. P. Complete structure and expression in transfected cells of high affinity IgE receptor. Nature. 1989 Jan 12;337(6203):187–189. doi: 10.1038/337187a0. [DOI] [PubMed] [Google Scholar]
  8. Brown E. J. Phagocytosis. Bioessays. 1995 Feb;17(2):109–117. doi: 10.1002/bies.950170206. [DOI] [PubMed] [Google Scholar]
  9. Cambier J. C. Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). J Immunol. 1995 Oct 1;155(7):3281–3285. [PubMed] [Google Scholar]
  10. Clemens D. L., Horwitz M. A. Membrane sorting during phagocytosis: selective exclusion of major histocompatibility complex molecules but not complement receptor CR3 during conventional and coiling phagocytosis. J Exp Med. 1992 May 1;175(5):1317–1326. doi: 10.1084/jem.175.5.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Conrad D. H., Studer E., Gervasoni J., Mohanakumar T. Properties of two monoclonal antibodies directed against the Fc and Fab' regions of rat IgE. Int Arch Allergy Appl Immunol. 1983;70(4):352–360. doi: 10.1159/000233347. [DOI] [PubMed] [Google Scholar]
  12. Daëron M., Malbec O., Bonnerot C., Latour S., Segal D. M., Fridman W. H. Tyrosine-containing activation motif-dependent phagocytosis in mast cells. J Immunol. 1994 Jan 15;152(2):783–792. [PubMed] [Google Scholar]
  13. Di Virgilio F., Meyer B. C., Greenberg S., Silverstein S. C. Fc receptor-mediated phagocytosis occurs in macrophages at exceedingly low cytosolic Ca2+ levels. J Cell Biol. 1988 Mar;106(3):657–666. doi: 10.1083/jcb.106.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dráberová L., Dráber P. Thy-1 glycoprotein and src-like protein-tyrosine kinase p53/p56lyn are associated in large detergent-resistant complexes in rat basophilic leukemia cells. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3611–3615. doi: 10.1073/pnas.90.8.3611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Eiseman E., Bolen J. B. Engagement of the high-affinity IgE receptor activates src protein-related tyrosine kinases. Nature. 1992 Jan 2;355(6355):78–80. doi: 10.1038/355078a0. [DOI] [PubMed] [Google Scholar]
  16. Erickson J., Kane P., Goldstein B., Holowka D., Baird B. Cross-linking of IgE-receptor complexes at the cell surface: a fluorescence method for studying the binding of monovalent and bivalent haptens to IgE. Mol Immunol. 1986 Jul;23(7):769–781. doi: 10.1016/0161-5890(86)90089-1. [DOI] [PubMed] [Google Scholar]
  17. Field K. A., Holowka D., Baird B. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9201–9205. doi: 10.1073/pnas.92.20.9201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fra A. M., Williamson E., Simons K., Parton R. G. Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem. 1994 Dec 9;269(49):30745–30748. [PubMed] [Google Scholar]
  19. Greenberg S., Chang P., Wang D. C., Xavier R., Seed B. Clustered syk tyrosine kinase domains trigger phagocytosis. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1103–1107. doi: 10.1073/pnas.93.3.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Guo N. H., Her G. R., Reinhold V. N., Brennan M. J., Siraganian R. P., Ginsburg V. Monoclonal antibody AA4, which inhibits binding of IgE to high affinity receptors on rat basophilic leukemia cells, binds to novel alpha-galactosyl derivatives of ganglioside GD1b. J Biol Chem. 1989 Aug 5;264(22):13267–13272. [PubMed] [Google Scholar]
  21. Hamawy M. M., Oliver C., Mergenhagen S. E., Siraganian R. P. Adherence of rat basophilic leukemia (RBL-2H3) cells to fibronectin-coated surfaces enhances secretion. J Immunol. 1992 Jul 15;149(2):615–621. [PubMed] [Google Scholar]
  22. Hashemi B. B., Slattery J. P., Holowka D., Baird B. Sustained T cell receptor-mediated Ca2+ responses rely on dynamic engagement of receptors. J Immunol. 1996 May 15;156(10):3660–3667. [PubMed] [Google Scholar]
  23. Holowka D., Baird B. Antigen-mediated IGE receptor aggregation and signaling: a window on cell surface structure and dynamics. Annu Rev Biophys Biomol Struct. 1996;25:79–112. doi: 10.1146/annurev.bb.25.060196.000455. [DOI] [PubMed] [Google Scholar]
  24. Holowka D., Metzger H. Further characterization of the beta-component of the receptor for immunoglobulin E. Mol Immunol. 1982 Feb;19(2):219–227. doi: 10.1016/0161-5890(82)90334-0. [DOI] [PubMed] [Google Scholar]
  25. Hutchcroft J. E., Geahlen R. L., Deanin G. G., Oliver J. M. Fc epsilon RI-mediated tyrosine phosphorylation and activation of the 72-kDa protein-tyrosine kinase, PTK72, in RBL-2H3 rat tumor mast cells. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9107–9111. doi: 10.1073/pnas.89.19.9107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Issekutz T. B., Wykretowicz A. Effect of a new monoclonal antibody, TA-2, that inhibits lymphocyte adherence to cytokine stimulated endothelium in the rat. J Immunol. 1991 Jul 1;147(1):109–116. [PubMed] [Google Scholar]
  27. Kent U. M., Mao S. Y., Wofsy C., Goldstein B., Ross S., Metzger H. Dynamics of signal transduction after aggregation of cell-surface receptors: studies on the type I receptor for IgE. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3087–3091. doi: 10.1073/pnas.91.8.3087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lee R. J., Oliver J. M. Roles for Ca2+ stores release and two Ca2+ influx pathways in the Fc epsilon R1-activated Ca2+ responses of RBL-2H3 mast cells. Mol Biol Cell. 1995 Jul;6(7):825–839. doi: 10.1091/mbc.6.7.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Liu F. T., Bohn J. W., Ferry E. L., Yamamoto H., Molinaro C. A., Sherman L. A., Klinman N. R., Katz D. H. Monoclonal dinitrophenyl-specific murine IgE antibody: preparation, isolation, and characterization. J Immunol. 1980 Jun;124(6):2728–2737. [PubMed] [Google Scholar]
  30. Mendoza G., Metzger H. Distribution and valency of receptor for IgE on rodent mast cells and related tumour cells. Nature. 1976 Dec 9;264(5586):548–550. doi: 10.1038/264548a0. [DOI] [PubMed] [Google Scholar]
  31. Menon A. K., Holowka D., Webb W. W., Baird B. Cross-linking of receptor-bound IgE to aggregates larger than dimers leads to rapid immobilization. J Cell Biol. 1986 Feb;102(2):541–550. doi: 10.1083/jcb.102.2.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Minoguchi K., Swaim W. D., Berenstein E. H., Siraganian R. P. Src family tyrosine kinase p53/56lyn, a serine kinase and Fc epsilon RI associate with alpha-galactosyl derivatives of ganglioside GD1b in rat basophilic leukemia RBL-2H3 cells. J Biol Chem. 1994 Feb 18;269(7):5249–5254. [PubMed] [Google Scholar]
  33. Miyamoto S., Teramoto H., Coso O. A., Gutkind J. S., Burbelo P. D., Akiyama S. K., Yamada K. M. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol. 1995 Nov;131(3):791–805. doi: 10.1083/jcb.131.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Mohr F. C., Fewtrell C. Depolarization of rat basophilic leukemia cells inhibits calcium uptake and exocytosis. J Cell Biol. 1987 Mar;104(3):783–792. doi: 10.1083/jcb.104.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Oliver C., Sahara N., Kitani S., Robbins A. R., Mertz L. M., Siraganian R. P. Binding of monoclonal antibody AA4 to gangliosides on rat basophilic leukemia cells produces changes similar to those seen with Fc epsilon receptor activation. J Cell Biol. 1992 Feb;116(3):635–646. doi: 10.1083/jcb.116.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Paolini R., Jouvin M. H., Kinet J. P. Phosphorylation and dephosphorylation of the high-affinity receptor for immunoglobulin E immediately after receptor engagement and disengagement. Nature. 1991 Oct 31;353(6347):855–858. doi: 10.1038/353855a0. [DOI] [PubMed] [Google Scholar]
  37. Paolini R., Renard V., Vivier E., Ochiai K., Jouvin M. H., Malissen B., Kinet J. P. Different roles for the Fc epsilon RI gamma chain as a function of the receptor context. J Exp Med. 1995 Jan 1;181(1):247–255. doi: 10.1084/jem.181.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pfeiffer J. R., Seagrave J. C., Davis B. H., Deanin G. G., Oliver J. M. Membrane and cytoskeletal changes associated with IgE-mediated serotonin release from rat basophilic leukemia cells. J Cell Biol. 1985 Dec;101(6):2145–2155. doi: 10.1083/jcb.101.6.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pribluda V. S., Pribluda C., Metzger H. Transphosphorylation as the mechanism by which the high-affinity receptor for IgE is phosphorylated upon aggregation. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11246–11250. doi: 10.1073/pnas.91.23.11246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Resh M. D. Myristylation and palmitylation of Src family members: the fats of the matter. Cell. 1994 Feb 11;76(3):411–413. doi: 10.1016/0092-8674(94)90104-x. [DOI] [PubMed] [Google Scholar]
  41. Scharenberg A. M., Kinet J. P. Early events in mast cell signal transduction. Chem Immunol. 1995;61:72–87. [PubMed] [Google Scholar]
  42. Scharenberg A. M., Lin S., Cuenod B., Yamamura H., Kinet J. P. Reconstitution of interactions between tyrosine kinases and the high affinity IgE receptor which are controlled by receptor clustering. EMBO J. 1995 Jul 17;14(14):3385–3394. doi: 10.1002/j.1460-2075.1995.tb07344.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schroeder R., London E., Brown D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12130–12134. doi: 10.1073/pnas.91.25.12130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Schwartz L. B., Austen K. F., Wasserman S. I. Immunologic release of beta-hexosaminidase and beta-glucuronidase from purified rat serosal mast cells. J Immunol. 1979 Oct;123(4):1445–1450. [PubMed] [Google Scholar]
  45. Seagrave J. C., Deanin G. G., Martin J. C., Davis B. H., Oliver J. M. DNP-phycobiliproteins, fluorescent antigens to study dynamic properties of antigen-IgE-receptor complexes on RBL-2H3 rat mast cells. Cytometry. 1987 May;8(3):287–295. doi: 10.1002/cyto.990080309. [DOI] [PubMed] [Google Scholar]
  46. Thomas J. L., Holowka D., Baird B., Webb W. W. Large-scale co-aggregation of fluorescent lipid probes with cell surface proteins. J Cell Biol. 1994 May;125(4):795–802. doi: 10.1083/jcb.125.4.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Turner C. E., Burridge K. Transmembrane molecular assemblies in cell-extracellular matrix interactions. Curr Opin Cell Biol. 1991 Oct;3(5):849–853. doi: 10.1016/0955-0674(91)90059-8. [DOI] [PubMed] [Google Scholar]
  48. Weetall M., Holowka D., Baird B. Heterologous desensitization of the high affinity receptor for IgE (Fc epsilon R1) on RBL cells. J Immunol. 1993 May 1;150(9):4072–4083. [PubMed] [Google Scholar]
  49. Weiss A., Littman D. R. Signal transduction by lymphocyte antigen receptors. Cell. 1994 Jan 28;76(2):263–274. doi: 10.1016/0092-8674(94)90334-4. [DOI] [PubMed] [Google Scholar]
  50. Wolf D. E. Determination of the sidedness of carbocyanine dye labeling of membranes. Biochemistry. 1985 Jan 29;24(3):582–586. doi: 10.1021/bi00324a006. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES