Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Sep 2;134(6):1483–1497. doi: 10.1083/jcb.134.6.1483

Merosin and laminin in myogenesis; specific requirement for merosin in myotube stability and survival

PMCID: PMC2121009  PMID: 8830776

Abstract

Laminin (laminin-1; alpha 1-beta 1-gamma 1) is known to promote myoblast proliferation, fusion, and myotube formation. Merosin (laminin- 2 and -4; alpha 2-beta 1/beta 2-gamma 1) is the predominant laminin variant in skeletal muscle basement membranes; genetic defects affecting its structure or expression are the causes of some types of congenital muscular dystrophy. However, the precise nature of the functions of merosin in muscle remain unknown. We have developed an in vitro system that exploits human RD and mouse C2C12 myoblastic cell lines and their clonal variants to study the roles of merosin and laminin in myogenesis. In the parental cells, which fuse efficiently to multinucleated myotubes, merosin expression is upregulated as a function of differentiation while laminin expression is downregulated. Cells from fusion-deficient clones do not express either protein, but laminin or merosin added to the culture medium induced their fusion. Clonal variants which fuse, but form unstable myotubes, express laminin but not merosin. Exogenous merosin converted these myotubes to a stable phenotype, while laminin had no effect. Myotube instability was corrected most efficiently by transfection of the merosin-deficient cells with the merosin alpha 2 chain cDNA. Finally, merosin appears to promote myotube stability by preventing apoptosis. Hence, these studies identify novel biological functions for merosin in myoblast fusion and muscle cell survival; furthermore, these explain some of the pathogenic events observed in congenital muscular dystrophy caused by merosin deficiency and provide in vitro models to further investigate the molecular mechanisms of this disease.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bandman E. Contractile protein isoforms in muscle development. Dev Biol. 1992 Dec;154(2):273–283. doi: 10.1016/0012-1606(92)90067-q. [DOI] [PubMed] [Google Scholar]
  2. Beaulieu J. F., Vachon P. H. Reciprocal expression of laminin A-chain isoforms along the crypt-villus axis in the human small intestine. Gastroenterology. 1994 Apr;106(4):829–839. doi: 10.1016/0016-5085(94)90740-4. [DOI] [PubMed] [Google Scholar]
  3. Belkin A. M., Zhidkova N. I., Balzac F., Altruda F., Tomatis D., Maier A., Tarone G., Koteliansky V. E., Burridge K. Beta 1D integrin displaces the beta 1A isoform in striated muscles: localization at junctional structures and signaling potential in nonmuscle cells. J Cell Biol. 1996 Jan;132(1-2):211–226. doi: 10.1083/jcb.132.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blau H. M., Baltimore D. Differentiation requires continuous regulation. J Cell Biol. 1991 Mar;112(5):781–783. doi: 10.1083/jcb.112.5.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boudreau N., Sympson C. J., Werb Z., Bissell M. J. Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science. 1995 Feb 10;267(5199):891–893. doi: 10.1126/science.7531366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brunetti A., Goldfine I. D. Role of myogenin in myoblast differentiation and its regulation by fibroblast growth factor. J Biol Chem. 1990 Apr 15;265(11):5960–5963. [PubMed] [Google Scholar]
  7. Burgeson R. E., Chiquet M., Deutzmann R., Ekblom P., Engel J., Kleinman H., Martin G. R., Meneguzzi G., Paulsson M., Sanes J. A new nomenclature for the laminins. Matrix Biol. 1994 Apr;14(3):209–211. doi: 10.1016/0945-053x(94)90184-8. [DOI] [PubMed] [Google Scholar]
  8. Campbell K. P. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell. 1995 Mar 10;80(5):675–679. doi: 10.1016/0092-8674(95)90344-5. [DOI] [PubMed] [Google Scholar]
  9. Collo G., Starr L., Quaranta V. A new isoform of the laminin receptor integrin alpha 7 beta 1 is developmentally regulated in skeletal muscle. J Biol Chem. 1993 Sep 5;268(25):19019–19024. [PubMed] [Google Scholar]
  10. Echtermeyer F., Schöber S., Pöschl E., von der Mark H., von der Mark K. Specific induction of cell motility on laminin by alpha 7 integrin. J Biol Chem. 1996 Jan 26;271(4):2071–2075. doi: 10.1074/jbc.271.4.2071. [DOI] [PubMed] [Google Scholar]
  11. Edmondson D. G., Olson E. N. Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem. 1993 Jan 15;268(2):755–758. [PubMed] [Google Scholar]
  12. Ehrig K., Leivo I., Argraves W. S., Ruoslahti E., Engvall E. Merosin, a tissue-specific basement membrane protein, is a laminin-like protein. Proc Natl Acad Sci U S A. 1990 May;87(9):3264–3268. doi: 10.1073/pnas.87.9.3264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Engvall E. Cell adhesion in muscle. Braz J Med Biol Res. 1994 Sep;27(9):2213–2227. [PubMed] [Google Scholar]
  14. Engvall E., Earwicker D., Day A., Muir D., Manthorpe M., Paulsson M. Merosin promotes cell attachment and neurite outgrowth and is a component of the neurite-promoting factor of RN22 schwannoma cells. Exp Cell Res. 1992 Jan;198(1):115–123. doi: 10.1016/0014-4827(92)90156-3. [DOI] [PubMed] [Google Scholar]
  15. Engvall E., Earwicker D., Haaparanta T., Ruoslahti E., Sanes J. R. Distribution and isolation of four laminin variants; tissue restricted distribution of heterotrimers assembled from five different subunits. Cell Regul. 1990 Sep;1(10):731–740. doi: 10.1091/mbc.1.10.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Engvall E. Laminin variants: why, where and when? Kidney Int. 1993 Jan;43(1):2–6. doi: 10.1038/ki.1993.2. [DOI] [PubMed] [Google Scholar]
  17. Foster R. F., Thompson J. M., Kaufman S. J. A laminin substrate promotes myogenesis in rat skeletal muscle cultures: analysis of replication and development using antidesmin and anti-BrdUrd monoclonal antibodies. Dev Biol. 1987 Jul;122(1):11–20. doi: 10.1016/0012-1606(87)90327-7. [DOI] [PubMed] [Google Scholar]
  18. Frisch S. M., Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol. 1994 Feb;124(4):619–626. doi: 10.1083/jcb.124.4.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gavrieli Y., Sherman Y., Ben-Sasson S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992 Nov;119(3):493–501. doi: 10.1083/jcb.119.3.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Goodman S. L., Deutzmann R., Nurcombe V. Locomotory competence and laminin-specific cell surface binding sites are lost during myoblast differentiation. Development. 1989 Apr;105(4):795–802. doi: 10.1242/dev.105.4.795. [DOI] [PubMed] [Google Scholar]
  21. Goodman S. L., Risse G., von der Mark K. The E8 subfragment of laminin promotes locomotion of myoblasts over extracellular matrix. J Cell Biol. 1989 Aug;109(2):799–809. doi: 10.1083/jcb.109.2.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Haaparanta T., Uitto J., Ruoslahti E., Engvall E. Molecular cloning of the cDNA encoding human laminin A chain. Matrix. 1991 Jun;11(3):151–160. doi: 10.1016/s0934-8832(11)80153-8. [DOI] [PubMed] [Google Scholar]
  23. Hayashi Y. K., Engvall E., Arikawa-Hirasawa E., Goto K., Koga R., Nonaka I., Sugita H., Arahata K. Abnormal localization of laminin subunits in muscular dystrophies. J Neurol Sci. 1993 Oct;119(1):53–64. doi: 10.1016/0022-510x(93)90191-z. [DOI] [PubMed] [Google Scholar]
  24. Helbling-Leclerc A., Zhang X., Topaloglu H., Cruaud C., Tesson F., Weissenbach J., Tomé F. M., Schwartz K., Fardeau M., Tryggvason K. Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nat Genet. 1995 Oct;11(2):216–218. doi: 10.1038/ng1095-216. [DOI] [PubMed] [Google Scholar]
  25. Higuchi I., Yamada H., Fukunaga H., Iwaki H., Okubo R., Nakagawa M., Osame M., Roberds S. L., Shimizu T., Campbell K. P. Abnormal expression of laminin suggests disturbance of sarcolemma-extracellular matrix interaction in Japanese patients with autosomal recessive muscular dystrophy deficient in adhalin. J Clin Invest. 1994 Aug;94(2):601–606. doi: 10.1172/JCI117375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hillaire D., Leclerc A., Fauré S., Topaloglu H., Chiannilkulchaï N., Guicheney P., Grinas L., Legos P., Philpot J., Evangelista T. Localization of merosin-negative congenital muscular dystrophy to chromosome 6q2 by homozygosity mapping. Hum Mol Genet. 1994 Sep;3(9):1657–1661. doi: 10.1093/hmg/3.9.1657. [DOI] [PubMed] [Google Scholar]
  27. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  28. Katagiri T., Yamaguchi A., Komaki M., Abe E., Takahashi N., Ikeda T., Rosen V., Wozney J. M., Fujisawa-Sehara A., Suda T. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol. 1994 Dec;127(6 Pt 1):1755–1766. doi: 10.1083/jcb.127.6.1755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Klein G., Ekblom M., Fecker L., Timpl R., Ekblom P. Differential expression of laminin A and B chains during development of embryonic mouse organs. Development. 1990 Nov;110(3):823–837. doi: 10.1242/dev.110.3.823. [DOI] [PubMed] [Google Scholar]
  30. Kroll T. G., Peters B. P., Hustad C. M., Jones P. A., Killen P. D., Ruddon R. W. Expression of laminin chains during myogenic differentiation. J Biol Chem. 1994 Mar 25;269(12):9270–9277. [PubMed] [Google Scholar]
  31. Kühl U., Timpl R., von der Mark K. Synthesis of type IV collagen and laminin in cultures of skeletal muscle cells and their assembly on the surface of myotubes. Dev Biol. 1982 Oct;93(2):344–354. doi: 10.1016/0012-1606(82)90122-1. [DOI] [PubMed] [Google Scholar]
  32. Lassar A. B., Skapek S. X., Novitch B. Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr Opin Cell Biol. 1994 Dec;6(6):788–794. doi: 10.1016/0955-0674(94)90046-9. [DOI] [PubMed] [Google Scholar]
  33. Leivo I., Engvall E. Merosin, a protein specific for basement membranes of Schwann cells, striated muscle, and trophoblast, is expressed late in nerve and muscle development. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1544–1548. doi: 10.1073/pnas.85.5.1544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lockshin R. A., Knight R. A., Melino G. Cell death in muscle pathology. Cell Death Differ. 1995 Oct;2(4):231–232. [PubMed] [Google Scholar]
  35. Martin P. T., Ettinger A. J., Sanes J. R. A synaptic localization domain in the synaptic cleft protein laminin beta 2 (s-laminin) Science. 1995 Jul 21;269(5222):413–416. doi: 10.1126/science.7618109. [DOI] [PubMed] [Google Scholar]
  36. Matsuda R., Nishikawa A., Tanaka H. Visualization of dystrophic muscle fibers in mdx mouse by vital staining with Evans blue: evidence of apoptosis in dystrophin-deficient muscle. J Biochem. 1995 Nov;118(5):959–964. doi: 10.1093/jb/118.5.959. [DOI] [PubMed] [Google Scholar]
  37. Mayne R., Sanderson R. D. The extracellular matrix of skeletal muscle. Coll Relat Res. 1985 Nov;5(5):449–468. doi: 10.1016/s0174-173x(85)80032-7. [DOI] [PubMed] [Google Scholar]
  38. McDonald K. A., Lakonishok M., Horwitz A. F. Alpha v and alpha 3 integrin subunits are associated with myofibrils during myofibrillogenesis. J Cell Sci. 1995 Mar;108(Pt 3):975–983. doi: 10.1242/jcs.108.3.975. [DOI] [PubMed] [Google Scholar]
  39. Meredith J. E., Jr, Fazeli B., Schwartz M. A. The extracellular matrix as a cell survival factor. Mol Biol Cell. 1993 Sep;4(9):953–961. doi: 10.1091/mbc.4.9.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Ocalan M., Goodman S. L., Kühl U., Hauschka S. D., von der Mark K. Laminin alters cell shape and stimulates motility and proliferation of murine skeletal myoblasts. Dev Biol. 1988 Jan;125(1):158–167. doi: 10.1016/0012-1606(88)90068-1. [DOI] [PubMed] [Google Scholar]
  41. Olson E. N. Interplay between proliferation and differentiation within the myogenic lineage. Dev Biol. 1992 Dec;154(2):261–272. doi: 10.1016/0012-1606(92)90066-p. [DOI] [PubMed] [Google Scholar]
  42. Paulsson M., Saladin K., Engvall E. Structure of laminin variants. The 300-kDa chains of murine and bovine heart laminin are related to the human placenta merosin heavy chain and replace the a chain in some laminin variants. J Biol Chem. 1991 Sep 15;266(26):17545–17551. [PubMed] [Google Scholar]
  43. Podleski T. R., Greenberg I., Schlessinger J., Yamada K. M. Fibronectin delays the fusion of L6 myoblasts. Exp Cell Res. 1979 Sep;122(2):317–326. doi: 10.1016/0014-4827(79)90308-2. [DOI] [PubMed] [Google Scholar]
  44. Roskelley C. D., Desprez P. Y., Bissell M. J. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12378–12382. doi: 10.1073/pnas.91.26.12378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Roskelley C. D., Srebrow A., Bissell M. J. A hierarchy of ECM-mediated signalling regulates tissue-specific gene expression. Curr Opin Cell Biol. 1995 Oct;7(5):736–747. doi: 10.1016/0955-0674(95)80117-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ruoslahti E., Reed J. C. Anchorage dependence, integrins, and apoptosis. Cell. 1994 May 20;77(4):477–478. doi: 10.1016/0092-8674(94)90209-7. [DOI] [PubMed] [Google Scholar]
  47. Sanes J. R., Engvall E., Butkowski R., Hunter D. D. Molecular heterogeneity of basal laminae: isoforms of laminin and collagen IV at the neuromuscular junction and elsewhere. J Cell Biol. 1990 Oct;111(4):1685–1699. doi: 10.1083/jcb.111.4.1685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sanes J. R., Schachner M., Covault J. Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle. J Cell Biol. 1986 Feb;102(2):420–431. doi: 10.1083/jcb.102.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sasaki M., Kleinman H. K., Huber H., Deutzmann R., Yamada Y. Laminin, a multidomain protein. The A chain has a unique globular domain and homology with the basement membrane proteoglycan and the laminin B chains. J Biol Chem. 1988 Nov 15;263(32):16536–16544. [PubMed] [Google Scholar]
  50. Sastry S. K., Lakonishok M., Thomas D. A., Muschler J., Horwitz A. F. Integrin alpha subunit ratios, cytoplasmic domains, and growth factor synergy regulate muscle proliferation and differentiation. J Cell Biol. 1996 Apr;133(1):169–184. doi: 10.1083/jcb.133.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Schuler F., Sorokin L. M. Expression of laminin isoforms in mouse myogenic cells in vitro and in vivo. J Cell Sci. 1995 Dec;108(Pt 12):3795–3805. doi: 10.1242/jcs.108.12.3795. [DOI] [PubMed] [Google Scholar]
  52. Sewry C. A., Chevallay M., Tomé F. M. Expression of laminin subunits in human fetal skeletal muscle. Histochem J. 1995 Jul;27(7):497–504. [PubMed] [Google Scholar]
  53. Smith J., Fowkes G., Schofield P. N. Programmed cell death in dystrophic (mdx) muscle is inhibited by IGF-II. Cell Death Differ. 1995 Oct;2(4):243–251. [PubMed] [Google Scholar]
  54. Song W. K., Wang W., Sato H., Bielser D. A., Kaufman S. J. Expression of alpha 7 integrin cytoplasmic domains during skeletal muscle development: alternate forms, conformational change, and homologies with serine/threonine kinases and tyrosine phosphatases. J Cell Sci. 1993 Dec;106(Pt 4):1139–1152. doi: 10.1242/jcs.106.4.1139. [DOI] [PubMed] [Google Scholar]
  55. Sorokin L. M., Conzelmann S., Ekblom P., Battaglia C., Aumailley M., Timpl R. Monoclonal antibodies against laminin A chain fragment E3 and their effects on binding to cells and proteoglycan and on kidney development. Exp Cell Res. 1992 Jul;201(1):137–144. doi: 10.1016/0014-4827(92)90357-e. [DOI] [PubMed] [Google Scholar]
  56. Sunada Y., Bernier S. M., Kozak C. A., Yamada Y., Campbell K. P. Deficiency of merosin in dystrophic dy mice and genetic linkage of laminin M chain gene to dy locus. J Biol Chem. 1994 May 13;269(19):13729–13732. [PubMed] [Google Scholar]
  57. Sunada Y., Bernier S. M., Utani A., Yamada Y., Campbell K. P. Identification of a novel mutant transcript of laminin alpha 2 chain gene responsible for muscular dystrophy and dysmyelination in dy2J mice. Hum Mol Genet. 1995 Jun;4(6):1055–1061. doi: 10.1093/hmg/4.6.1055. [DOI] [PubMed] [Google Scholar]
  58. Tidball J. G., Albrecht D. E., Lokensgard B. E., Spencer M. J. Apoptosis precedes necrosis of dystrophin-deficient muscle. J Cell Sci. 1995 Jun;108(Pt 6):2197–2204. doi: 10.1242/jcs.108.6.2197. [DOI] [PubMed] [Google Scholar]
  59. Tinsley J. M., Blake D. J., Zuellig R. A., Davies K. E. Increasing complexity of the dystrophin-associated protein complex. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8307–8313. doi: 10.1073/pnas.91.18.8307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Tomé F. M., Evangelista T., Leclerc A., Sunada Y., Manole E., Estournet B., Barois A., Campbell K. P., Fardeau M. Congenital muscular dystrophy with merosin deficiency. C R Acad Sci III. 1994 Apr;317(4):351–357. [PubMed] [Google Scholar]
  61. Vachon P. H., Beaulieu J. F. Extracellular heterotrimeric laminin promotes differentiation in human enterocytes. Am J Physiol. 1995 May;268(5 Pt 1):G857–G867. doi: 10.1152/ajpgi.1995.268.5.G857. [DOI] [PubMed] [Google Scholar]
  62. Volk T., Fessler L. I., Fessler J. H. A role for integrin in the formation of sarcomeric cytoarchitecture. Cell. 1990 Nov 2;63(3):525–536. doi: 10.1016/0092-8674(90)90449-o. [DOI] [PubMed] [Google Scholar]
  63. Vuolteenaho R., Nissinen M., Sainio K., Byers M., Eddy R., Hirvonen H., Shows T. B., Sariola H., Engvall E., Tryggvason K. Human laminin M chain (merosin): complete primary structure, chromosomal assignment, and expression of the M and A chain in human fetal tissues. J Cell Biol. 1994 Feb;124(3):381–394. doi: 10.1083/jcb.124.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Weintraub H., Davis R., Tapscott S., Thayer M., Krause M., Benezra R., Blackwell T. K., Turner D., Rupp R., Hollenberg S. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991 Feb 15;251(4995):761–766. doi: 10.1126/science.1846704. [DOI] [PubMed] [Google Scholar]
  65. Weintraub H. The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell. 1993 Dec 31;75(7):1241–1244. doi: 10.1016/0092-8674(93)90610-3. [DOI] [PubMed] [Google Scholar]
  66. Wewer U. M., Durkin M. E., Zhang X., Laursen H., Nielsen N. H., Towfighi J., Engvall E., Albrechtsen R. Laminin beta 2 chain and adhalin deficiency in the skeletal muscle of Walker-Warburg syndrome (cerebro-ocular dysplasia-muscular dystrophy). Neurology. 1995 Nov;45(11):2099–2101. doi: 10.1212/wnl.45.11.2099. [DOI] [PubMed] [Google Scholar]
  67. Wewer U. M., Engvall E. Laminins. Methods Enzymol. 1994;245:85–104. doi: 10.1016/0076-6879(94)45007-2. [DOI] [PubMed] [Google Scholar]
  68. Xu H., Christmas P., Wu X. R., Wewer U. M., Engvall E. Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5572–5576. doi: 10.1073/pnas.91.12.5572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Xu H., Wu X. R., Wewer U. M., Engvall E. Murine muscular dystrophy caused by a mutation in the laminin alpha 2 (Lama2) gene. Nat Genet. 1994 Nov;8(3):297–302. doi: 10.1038/ng1194-297. [DOI] [PubMed] [Google Scholar]
  70. Zhidkova N. I., Belkin A. M., Mayne R. Novel isoform of beta 1 integrin expressed in skeletal and cardiac muscle. Biochem Biophys Res Commun. 1995 Sep 5;214(1):279–285. doi: 10.1006/bbrc.1995.2285. [DOI] [PubMed] [Google Scholar]
  71. von der Mark K., Ocalan M. Antagonistic effects of laminin and fibronectin on the expression of the myogenic phenotype. Differentiation. 1989 May;40(2):150–157. doi: 10.1111/j.1432-0436.1989.tb00823.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES