Abstract
Asexually replicating populations of Plasmodium parasites, including those from cloned lines, generate both male and female gametes to complete the malaria life cycle through the mosquito. The generation of these sexual forms begins with the induction of gametocytes from haploid asexual stage parasites in the blood of the vertebrate host. The molecular processes that govern the differentiation and development of the sexual forms are largely unknown. Here we describe a defect that affects the development of competent male gametocytes from a mutant clone of P. falciparum (Dd2). Comparison of the Dd2 clone to the predecessor clone from which it was derived (W2'82) shows that the defect is a mutation that arose during the long-term cultivation of asexual stages in vitro. Light and electron microscopic images, and indirect immunofluorescence assays with male-specific anti-alpha- tubulin II antibodies, indicate a global disruption of male development at the gametocyte level with at least a 70-90% reduction in the proportion of mature male gametocytes by the Dd2 clone relative to W2'82. A high prevalence of abnormal gametocyte forms, frequently containing multiple and unusually large vacuoles, is associated with the defect. The reduced production of mature male gametocytes may reflect a problem in processes that commit a gametocyte to male development or a progressive attrition of viable male gametocytes during maturation. The defect is genetically linked to an almost complete absence of male gamete production and of infectivity to mosquitoes. This is the first sex-specific developmental mutation identified and characterized in Plasmodium.
Full Text
The Full Text of this article is available as a PDF (3.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alano P., Roca L., Smith D., Read D., Carter R., Day K. Plasmodium falciparum: parasites defective in early stages of gametocytogenesis. Exp Parasitol. 1995 Sep;81(2):227–235. doi: 10.1006/expr.1995.1112. [DOI] [PubMed] [Google Scholar]
- Babiker H. A., Ranford-Cartwright L. C., Currie D., Charlwood J. D., Billingsley P., Teuscher T., Walliker D. Random mating in a natural population of the malaria parasite Plasmodium falciparum. Parasitology. 1994 Nov;109(Pt 4):413–421. doi: 10.1017/s0031182000080665. [DOI] [PubMed] [Google Scholar]
- Baker D. A., Thompson J., Daramola O. O., Carlton J. M., Targett G. A. Sexual-stage-specific RNA expression of a new Plasmodium falciparum gene detected by in situ hybridisation. Mol Biochem Parasitol. 1995 Jun;72(1-2):193–201. doi: 10.1016/0166-6851(95)00073-a. [DOI] [PubMed] [Google Scholar]
- Carter R., Miller L. H. Evidence for environmental modulation of gametocytogenesis in Plasmodium falciparum in continuous culture. Bull World Health Organ. 1979;57 (Suppl 1):37–52. [PMC free article] [PubMed] [Google Scholar]
- Conley C. A., Hanson M. R. How do alterations in plant mitochondrial genomes disrupt pollen development? J Bioenerg Biomembr. 1995 Aug;27(4):447–457. doi: 10.1007/BF02110007. [DOI] [PubMed] [Google Scholar]
- Day K. P., Karamalis F., Thompson J., Barnes D. A., Peterson C., Brown H., Brown G. V., Kemp D. J. Genes necessary for expression of a virulence determinant and for transmission of Plasmodium falciparum are located on a 0.3-megabase region of chromosome 9. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):8292–8296. doi: 10.1073/pnas.90.17.8292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delves C. J., Alano P., Ridley R. G., Goman M., Holloway S. P., Hyde J. E., Scaife J. G. Expression of alpha and beta tubulin genes during the asexual and sexual blood stages of Plasmodium falciparum. Mol Biochem Parasitol. 1990 Dec;43(2):271–278. doi: 10.1016/0166-6851(90)90151-b. [DOI] [PubMed] [Google Scholar]
- Dolan S. A., Herrfeldt J. A., Wellems T. E. Restriction polymorphisms and fingerprint patterns from an interspersed repetitive element of Plasmodium falciparum DNA. Mol Biochem Parasitol. 1993 Sep;61(1):137–142. doi: 10.1016/0166-6851(93)90166-u. [DOI] [PubMed] [Google Scholar]
- Egel R., Nielsen O., Weilguny D. Sexual differentiation in fission yeast. Trends Genet. 1990 Nov;6(11):369–373. doi: 10.1016/0168-9525(90)90279-f. [DOI] [PubMed] [Google Scholar]
- Hawking F., Wilson M. E., Gammage K. Evidence for cyclic development and short-lived maturity in the gametocytes of Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1971;65(5):549–559. doi: 10.1016/0035-9203(71)90036-8. [DOI] [PubMed] [Google Scholar]
- Herskowitz I. Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol Rev. 1988 Dec;52(4):536–553. doi: 10.1128/mr.52.4.536-553.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill W. G., Babiker H. A., Ranford-Cartwright L. C., Walliker D. Estimation of inbreeding coefficients from genotypic data on multiple alleles, and application to estimation of clonality in malaria parasites. Genet Res. 1995 Feb;65(1):53–61. doi: 10.1017/s0016672300033000. [DOI] [PubMed] [Google Scholar]
- Holloway S. P., Gerousis M., Delves C. J., Sims P. F., Scaife J. G., Hyde J. E. The tubulin genes of the human malaria parasite Plasmodium falciparum, their chromosomal location and sequence analysis of the alpha-tubulin II gene. Mol Biochem Parasitol. 1990 Dec;43(2):257–270. doi: 10.1016/0166-6851(90)90150-k. [DOI] [PubMed] [Google Scholar]
- Ifediba T., Vanderberg J. P. Complete in vitro maturation of Plasmodium falciparum gametocytes. Nature. 1981 Nov 26;294(5839):364–366. doi: 10.1038/294364a0. [DOI] [PubMed] [Google Scholar]
- Janse C. J., Carlton J. M., Walliker D., Waters A. P. Conserved location of genes on polymorphic chromosomes of four species of malaria parasites. Mol Biochem Parasitol. 1994 Dec;68(2):285–296. doi: 10.1016/0166-6851(94)90173-2. [DOI] [PubMed] [Google Scholar]
- Janse C. J., Ponnudurai T., Lensen A. H., Meuwissen J. H., Ramesar J., Van der Ploeg M., Overdulve J. P. DNA synthesis in gametocytes of Plasmodium falciparum. Parasitology. 1988 Feb;96(Pt 1):1–7. doi: 10.1017/s0031182000081609. [DOI] [PubMed] [Google Scholar]
- Janse C. J., Ramesar J., van den Berg F. M., Mons B. Plasmodium berghei: in vivo generation and selection of karyotype mutants and non-gametocyte producer mutants. Exp Parasitol. 1992 Feb;74(1):1–10. doi: 10.1016/0014-4894(92)90133-u. [DOI] [PubMed] [Google Scholar]
- Kaslow D. C. Transmission-blocking immunity against malaria and other vector-borne diseases. Curr Opin Immunol. 1993 Aug;5(4):557–565. doi: 10.1016/0952-7915(93)90037-s. [DOI] [PubMed] [Google Scholar]
- Kirkman L. A., Su X. Z., Wellems T. E. Plasmodium falciparum: isolation of large numbers of parasite clones from infected blood samples. Exp Parasitol. 1996 Jun;83(1):147–149. doi: 10.1006/expr.1996.0058. [DOI] [PubMed] [Google Scholar]
- Lobo C. A., Konings R. N., Kumar N. Expression of early gametocyte-stage antigens Pfg27 and Pfs16 in synchronized gametocytes and non-gametocyte producing clones of Plasmodium falciparum. Mol Biochem Parasitol. 1994 Nov;68(1):151–154. doi: 10.1016/0166-6851(94)00155-3. [DOI] [PubMed] [Google Scholar]
- Mackenzie S., He S., Lyznik A. The Elusive Plant Mitochondrion as a Genetic System. Plant Physiol. 1994 Jul;105(3):775–780. doi: 10.1104/pp.105.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noden B. H., Beadle P. S., Vaughan J. A., Pumpuni C. B., Kent M. D., Beier J. C. Plasmodium falciparum: the population structure of mature gametocyte cultures has little effect on their innate fertility. Acta Trop. 1994 Oct;58(1):13–19. doi: 10.1016/0001-706x(94)90117-1. [DOI] [PubMed] [Google Scholar]
- Oduola A. M., Milhous W. K., Weatherly N. F., Bowdre J. H., Desjardins R. E. Plasmodium falciparum: induction of resistance to mefloquine in cloned strains by continuous drug exposure in vitro. Exp Parasitol. 1988 Dec;67(2):354–360. doi: 10.1016/0014-4894(88)90082-3. [DOI] [PubMed] [Google Scholar]
- Plowe C. V., Djimde A., Bouare M., Doumbo O., Wellems T. E. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg. 1995 Jun;52(6):565–568. doi: 10.4269/ajtmh.1995.52.565. [DOI] [PubMed] [Google Scholar]
- Pologe L. G. Aberrant transcription and the failure of Plasmodium falciparum to differentiate into gametocytes. Mol Biochem Parasitol. 1994 Nov;68(1):35–43. doi: 10.1016/0166-6851(94)00142-1. [DOI] [PubMed] [Google Scholar]
- Ponnudurai T., Lensen A. H., Van Gemert G. J., Bensink M. P., Bolmer M., Meuwissen J. H. Infectivity of cultured Plasmodium falciparum gametocytes to mosquitoes. Parasitology. 1989 Apr;98(Pt 2):165–173. doi: 10.1017/s0031182000062065. [DOI] [PubMed] [Google Scholar]
- Quakyi I. A., Matsumoto Y., Carter R., Udomsangpetch R., Sjolander A., Berzins K., Perlmann P., Aikawa M., Miller L. H. Movement of a falciparum malaria protein through the erythrocyte cytoplasm to the erythrocyte membrane is associated with lysis of the erythrocyte and release of gametes. Infect Immun. 1989 Mar;57(3):833–839. doi: 10.1128/iai.57.3.833-839.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rawlings D. J., Fujioka H., Fried M., Keister D. B., Aikawa M., Kaslow D. C. Alpha-tubulin II is a male-specific protein in Plasmodium falciparum. Mol Biochem Parasitol. 1992 Dec;56(2):239–250. doi: 10.1016/0166-6851(92)90173-h. [DOI] [PubMed] [Google Scholar]
- Rener J., Graves P. M., Carter R., Williams J. L., Burkot T. R. Target antigens of transmission-blocking immunity on gametes of plasmodium falciparum. J Exp Med. 1983 Sep 1;158(3):976–981. doi: 10.1084/jem.158.3.976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riley E. M., Williamson K. C., Greenwood B. M., Kaslow D. C. Human immune recognition of recombinant proteins representing discrete domains of the Plasmodium falciparum gamete surface protein, Pfs230. Parasite Immunol. 1995 Jan;17(1):11–19. doi: 10.1111/j.1365-3024.1995.tb00961.x. [DOI] [PubMed] [Google Scholar]
- Sinden R. E., Canning E. U., Bray R. S., Smalley M. E. Gametocyte and gamete development in Plasmodium falciparum. Proc R Soc Lond B Biol Sci. 1978 Jun 5;201(1145):375–399. doi: 10.1098/rspb.1978.0051. [DOI] [PubMed] [Google Scholar]
- Sinden R. E., Canning E. U., Spain B. Gametogenesis and fertilization in Plasmodium yoelii nigeriensis: a transmission electron microscope study. Proc R Soc Lond B Biol Sci. 1976 Mar 30;193(1110):55–76. doi: 10.1098/rspb.1976.0031. [DOI] [PubMed] [Google Scholar]
- Sinden R. E. Gametocytogenesis of Plasmodium falciparum in vitro: an electron microscopic study. Parasitology. 1982 Feb;84(1):1–11. doi: 10.1017/s003118200005160x. [DOI] [PubMed] [Google Scholar]
- Su X. z., Wellems T. E. Toward a high-resolution Plasmodium falciparum linkage map: polymorphic markers from hundreds of simple sequence repeats. Genomics. 1996 May 1;33(3):430–444. doi: 10.1006/geno.1996.0218. [DOI] [PubMed] [Google Scholar]
- Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
- Vaidya A. B., Morrisey J., Plowe C. V., Kaslow D. C., Wellems T. E. Unidirectional dominance of cytoplasmic inheritance in two genetic crosses of Plasmodium falciparum. Mol Cell Biol. 1993 Dec;13(12):7349–7357. doi: 10.1128/mcb.13.12.7349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaidya A. B., Muratova O., Guinet F., Keister D., Wellems T. E., Kaslow D. C. A genetic locus on Plasmodium falciparum chromosome 12 linked to a defect in mosquito-infectivity and male gametogenesis. Mol Biochem Parasitol. 1995 Jan;69(1):65–71. doi: 10.1016/0166-6851(94)00199-w. [DOI] [PubMed] [Google Scholar]
- Walker-Jonah A., Dolan S. A., Gwadz R. W., Panton L. J., Wellems T. E. An RFLP map of the Plasmodium falciparum genome, recombination rates and favored linkage groups in a genetic cross. Mol Biochem Parasitol. 1992 Apr;51(2):313–320. doi: 10.1016/0166-6851(92)90081-t. [DOI] [PubMed] [Google Scholar]
- Walliker D., Quakyi I. A., Wellems T. E., McCutchan T. F., Szarfman A., London W. T., Corcoran L. M., Burkot T. R., Carter R. Genetic analysis of the human malaria parasite Plasmodium falciparum. Science. 1987 Jun 26;236(4809):1661–1666. doi: 10.1126/science.3299700. [DOI] [PubMed] [Google Scholar]
- Wellems T. E., Panton L. J., Gluzman I. Y., do Rosario V. E., Gwadz R. W., Walker-Jonah A., Krogstad D. J. Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature. 1990 May 17;345(6272):253–255. doi: 10.1038/345253a0. [DOI] [PubMed] [Google Scholar]
- Wilson C. M., Serrano A. E., Wasley A., Bogenschutz M. P., Shankar A. H., Wirth D. F. Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum. Science. 1989 Jun 9;244(4909):1184–1186. doi: 10.1126/science.2658061. [DOI] [PubMed] [Google Scholar]
- Wu Y., Kirkman L. A., Wellems T. E. Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1130–1134. doi: 10.1073/pnas.93.3.1130. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu Y., Sifri C. D., Lei H. H., Su X. Z., Wellems T. E. Transfection of Plasmodium falciparum within human red blood cells. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):973–977. doi: 10.1073/pnas.92.4.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
