Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Oct 1;135(1):5–8. doi: 10.1083/jcb.135.1.5

Protofilaments and rings, two conformations of the tubulin family conserved from bacterial FtsZ to alpha/beta and gamma tubulin

PMCID: PMC2121013  PMID: 8858158

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borisy G. G., Olmsted J. B. Nucleated assembly of microtubules in porcine brain extracts. Science. 1972 Sep 29;177(4055):1196–1197. doi: 10.1126/science.177.4055.1196. [DOI] [PubMed] [Google Scholar]
  2. Burns R. G. Identification of two new members of the tubulin family. Cell Motil Cytoskeleton. 1995;31(4):255–258. doi: 10.1002/cm.970310402. [DOI] [PubMed] [Google Scholar]
  3. Erickson H. P. FtsZ, a prokaryotic homolog of tubulin? Cell. 1995 Feb 10;80(3):367–370. doi: 10.1016/0092-8674(95)90486-7. [DOI] [PubMed] [Google Scholar]
  4. Erickson H. P., Taylor D. W., Taylor K. A., Bramhill D. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):519–523. doi: 10.1073/pnas.93.1.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fan J., Griffiths A. D., Lockhart A., Cross R. A., Amos L. A. Microtubule minus ends can be labelled with a phage display antibody specific to alpha-tubulin. J Mol Biol. 1996 Jun 14;259(3):325–330. doi: 10.1006/jmbi.1996.0322. [DOI] [PubMed] [Google Scholar]
  6. Hirose K., Fan J., Amos L. A. Re-examination of the polarity of microtubules and sheets decorated with kinesin motor domain. J Mol Biol. 1995 Aug 18;251(3):329–333. doi: 10.1006/jmbi.1995.0437. [DOI] [PubMed] [Google Scholar]
  7. Inoué S., Salmon E. D. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell. 1995 Dec;6(12):1619–1640. doi: 10.1091/mbc.6.12.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kikkawa M., Ishikawa T., Nakata T., Wakabayashi T., Hirokawa N. Direct visualization of the microtubule lattice seam both in vitro and in vivo. J Cell Biol. 1994 Dec;127(6 Pt 2):1965–1971. doi: 10.1083/jcb.127.6.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kirschner M. W., Williams R. C., Weingarten M., Gerhart J. C. Microtubules from mammalian brain: some properties of their depolymerization products and a proposed mechanism of assembly and disassembly. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1159–1163. doi: 10.1073/pnas.71.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuchnir Fygenson D, Flyvbjerg H, Sneppen K, Libchaber A, Leibler S. Spontaneous nucleation of microtubules. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 May;51(5):5058–5063. doi: 10.1103/physreve.51.5058. [DOI] [PubMed] [Google Scholar]
  11. Mandelkow E. M., Mandelkow E., Milligan R. A. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J Cell Biol. 1991 Sep;114(5):977–991. doi: 10.1083/jcb.114.5.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mitchison T. J. Localization of an exchangeable GTP binding site at the plus end of microtubules. Science. 1993 Aug 20;261(5124):1044–1047. doi: 10.1126/science.8102497. [DOI] [PubMed] [Google Scholar]
  13. Moritz M., Braunfeld M. B., Sedat J. W., Alberts B., Agard D. A. Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature. 1995 Dec 7;378(6557):638–640. doi: 10.1038/378638a0. [DOI] [PubMed] [Google Scholar]
  14. Oakley B. R. Cell biology. A nice ring to the centrosome. Nature. 1995 Dec 7;378(6557):555–556. doi: 10.1038/378555a0. [DOI] [PubMed] [Google Scholar]
  15. Oakley B. R., Morris N. R. A beta-tubulin mutation in Aspergillus nidulans that blocks microtubule function without blocking assembly. Cell. 1981 Jun;24(3):837–845. doi: 10.1016/0092-8674(81)90109-4. [DOI] [PubMed] [Google Scholar]
  16. Shu H. B., Joshi H. C. Gamma-tubulin can both nucleate microtubule assembly and self-assemble into novel tubular structures in mammalian cells. J Cell Biol. 1995 Sep;130(5):1137–1147. doi: 10.1083/jcb.130.5.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Simon J. R., Salmon E. D. The structure of microtubule ends during the elongation and shortening phases of dynamic instability examined by negative-stain electron microscopy. J Cell Sci. 1990 Aug;96(Pt 4):571–582. doi: 10.1242/jcs.96.4.571. [DOI] [PubMed] [Google Scholar]
  18. Song Y. H., Mandelkow E. Recombinant kinesin motor domain binds to beta-tubulin and decorates microtubules with a B surface lattice. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1671–1675. doi: 10.1073/pnas.90.5.1671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Song Y. H., Mandelkow E. The anatomy of flagellar microtubules: polarity, seam, junctions, and lattice. J Cell Biol. 1995 Jan;128(1-2):81–94. doi: 10.1083/jcb.128.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Voter W. A., Erickson H. P. The kinetics of microtubule assembly. Evidence for a two-stage nucleation mechanism. J Biol Chem. 1984 Aug 25;259(16):10430–10438. [PubMed] [Google Scholar]
  21. Warner F. D., Satir P. The substructure of ciliary microtubules. J Cell Sci. 1973 Jan;12(1):313–326. doi: 10.1242/jcs.12.1.313. [DOI] [PubMed] [Google Scholar]
  22. Zheng Y., Wong M. L., Alberts B., Mitchison T. Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature. 1995 Dec 7;378(6557):578–583. doi: 10.1038/378578a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES