Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Oct 1;135(1):279–290. doi: 10.1083/jcb.135.1.279

Mast cells that reside at different locations in the jejunum of mice infected with Trichinella spiralis exhibit sequential changes in their granule ultrastructure and chymase phenotype

PMCID: PMC2121032  PMID: 8858180

Abstract

Whether or not a nontransformed, mature mouse mast cell (MC) or its committed progenitor can change its granule protease phenotype during inflammatory responses, has not been determined. To address this issue, the granule morphology and protease content of the MC in the jejunum of BALB/c mice exposed to Trichinella spiralis were assessed during the course of the infection. Within 1 wk after helminth infection of the mice, increased numbers of MC appeared in the crypts at the base of the villi, and by wk 2 the number of MC throughout the villi increased by approximately 25-fold. Shortly after the peak of the mastocytosis, the intraepithelial population of MC disappeared, followed by a progressive loss of lamina propria MC. The presence of stellate-shaped granules containing crystalline structures in intraepithelial MC at the height of infection and the retention of such granules with fragmented crystals in lamina propria MC during resolution of the mastocytosis suggest that MC migrate during the various phases of the inflammation. As assessed by immunohistochemical analyses of serial sections, predominant chymase phenotypes were observed at the height of the infection in the muscle that expressed mouse MC protease (mMCP) 5 without mMCP-1 or mMCP-2 and in the epithelium that expressed mMCP-1 and mMCP-2 without mMCP-5. Accompanying these two MC populations were transitional forms in the submucosa that expressed mMCP-2 and mMCP-5 without mMCP-1 and in the lamina propria that expressed mMCP-2 alone. These data suggest that jejunal MC sequentially express mMCP-2, cease expressing mMCP-5, and finally express mMCP-1 as the cells progressively appear in the submucosa, lamina propria, and epithelium, respectively. In the recovery phase of the disease, MC sequentially cease expressing mMCP-1, express mMCP-5, and finally cease expressing mMCP-2 as they present at the tips of the villi, the base of the villi, and the submucosa, respectively. That MC can reversibly alter their protease phenotypes suggests that a static nomenclature with fixed functional implications is inadequate to describe MC populations during an inflammatory process within a particular tissue.

Full Text

The Full Text of this article is available as a PDF (8.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arizono N., Kasugai T., Yamada M., Okada M., Morimoto M., Tei H., Newlands G. F., Miller H. R., Kitamura Y. Infection of Nippostrongylus brasiliensis induces development of mucosal-type but not connective tissue-type mast cells in genetically mast cell-deficient Ws/Ws rats. Blood. 1993 May 15;81(10):2572–2578. [PubMed] [Google Scholar]
  2. Beckstead J. H., Halverson P. S., Ries C. A., Bainton D. F. Enzyme histochemistry and immunohistochemistry on biopsy specimens of pathologic human bone marrow. Blood. 1981 Jun;57(6):1088–1098. [PubMed] [Google Scholar]
  3. Befus A. D., Pearce F. L., Gauldie J., Horsewood P., Bienenstock J. Mucosal mast cells. I. Isolation and functional characteristics of rat intestinal mast cells. J Immunol. 1982 Jun;128(6):2475–2480. [PubMed] [Google Scholar]
  4. Caulfield J. P., Lewis R. A., Hein A., Austen K. F. Secretion in dissociated human pulmonary mast cells. Evidence for solubilization of granule contents before discharge. J Cell Biol. 1980 May;85(2):299–312. doi: 10.1083/jcb.85.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chu W., Johnson D. A., Musich P. R. Molecular cloning and characterization of mouse mast cell chymases. Biochim Biophys Acta. 1992 May 22;1121(1-2):83–87. doi: 10.1016/0167-4838(92)90340-j. [DOI] [PubMed] [Google Scholar]
  6. Crowle P. K., Phillips D. E. Characteristics of mast cells in Chediak-Higashi mice: light and electron microscopic studies of connective tissue and mucosal mast cells. Exp Cell Biol. 1983;51(3):130–139. doi: 10.1159/000163183. [DOI] [PubMed] [Google Scholar]
  7. Eklund K. K., Ghildyal N., Austen K. F., Stevens R. L. Induction by IL-9 and suppression by IL-3 and IL-4 of the levels of chromosome 14-derived transcripts that encode late-expressed mouse mast cell proteases. J Immunol. 1993 Oct 15;151(8):4266–4273. [PubMed] [Google Scholar]
  8. Enerbäck L., Lundin P. M. Ultrastructure of mucosal mast cells in normal and compound 48-80-treated rats. Cell Tissue Res. 1974 Jul 3;150(1):95–105. doi: 10.1007/BF00220383. [DOI] [PubMed] [Google Scholar]
  9. Enerbäck L. Mast cells in rat gastrointestinal mucosa. 2. Dye-binding and metachromatic properties. Acta Pathol Microbiol Scand. 1966;66(3):303–312. doi: 10.1111/apm.1966.66.3.303. [DOI] [PubMed] [Google Scholar]
  10. Ghildyal N., Friend D. S., Nicodemus C. F., Austen K. F., Stevens R. L. Reversible expression of mouse mast cell protease 2 mRNA and protein in cultured mast cells exposed to IL-10. J Immunol. 1993 Sep 15;151(6):3206–3214. [PubMed] [Google Scholar]
  11. Ghildyal N., McNeil H. P., Gurish M. F., Austen K. F., Stevens R. L. Transcriptional regulation of the mucosal mast cell-specific protease gene, MMCP-2, by interleukin 10 and interleukin 3. J Biol Chem. 1992 Apr 25;267(12):8473–8477. [PubMed] [Google Scholar]
  12. Ghildyal N., McNeil H. P., Stechschulte S., Austen K. F., Silberstein D., Gurish M. F., Somerville L. L., Stevens R. L. IL-10 induces transcription of the gene for mouse mast cell protease-1, a serine protease preferentially expressed in mucosal mast cells of Trichinella spiralis-infected mice. J Immunol. 1992 Sep 15;149(6):2123–2129. [PubMed] [Google Scholar]
  13. Gurish M. F., Ghildyal N., McNeil H. P., Austen K. F., Gillis S., Stevens R. L. Differential expression of secretory granule proteases in mouse mast cells exposed to interleukin 3 and c-kit ligand. J Exp Med. 1992 Apr 1;175(4):1003–1012. doi: 10.1084/jem.175.4.1003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gurish M. F., Nadeau J. H., Johnson K. R., McNeil H. P., Grattan K. M., Austen K. F., Stevens R. L. A closely linked complex of mouse mast cell-specific chymase genes on chromosome 14. J Biol Chem. 1993 May 25;268(15):11372–11379. [PubMed] [Google Scholar]
  15. Gurish M. F., Pear W. S., Stevens R. L., Scott M. L., Sokol K., Ghildyal N., Webster M. J., Hu X., Austen K. F., Baltimore D. Tissue-regulated differentiation and maturation of a v-abl-immortalized mast cell-committed progenitor. Immunity. 1995 Aug;3(2):175–186. doi: 10.1016/1074-7613(95)90087-x. [DOI] [PubMed] [Google Scholar]
  16. Huang R. Y., Blom T., Hellman L. Cloning and structural analysis of MMCP-1, MMCP-4 and MMCP-5, three mouse mast cell-specific serine proteases. Eur J Immunol. 1991 Jul;21(7):1611–1621. doi: 10.1002/eji.1830210706. [DOI] [PubMed] [Google Scholar]
  17. Huntley J. F., Mackellar A., Miller H. R. Altered expression of mast cell proteases in the rat. Quantitative and immunohistochemical analysis of the distribution of rat mast cell proteases I and II during helminth infection. APMIS. 1993 Dec;101(12):953–962. doi: 10.1111/j.1699-0463.1993.tb00207.x. [DOI] [PubMed] [Google Scholar]
  18. Kitamura Y., Sonoda T., Nakano T., Kanayama Y. Probable dedifferentiation of mast cells in mouse connective tissues. Curr Top Dev Biol. 1986;20:325–332. [PubMed] [Google Scholar]
  19. Leder L. D. The chloroacetate esterase reaction. A useful means of histological diagnosis of hematological disorders from paraffin sections of skin. Am J Dermatopathol. 1979 Spring;1(1):39–42. [PubMed] [Google Scholar]
  20. Matin R., Tam E. K., Nadel J. A., Caughey G. H. Distribution of chymase-containing mast cells in human bronchi. J Histochem Cytochem. 1992 Jun;40(6):781–786. doi: 10.1177/40.6.1588024. [DOI] [PubMed] [Google Scholar]
  21. Matsumoto R., Sali A., Ghildyal N., Karplus M., Stevens R. L. Packaging of proteases and proteoglycans in the granules of mast cells and other hematopoietic cells. A cluster of histidines on mouse mast cell protease 7 regulates its binding to heparin serglycin proteoglycans. J Biol Chem. 1995 Aug 18;270(33):19524–19531. doi: 10.1074/jbc.270.33.19524. [DOI] [PubMed] [Google Scholar]
  22. Mayrhofer G. The nature of the thymus dependency of mucosal mast cells. II. The effect of thymectomy and of depleting recirculating lymphocytes on the response to Nippostrongylus brasilliensis. Cell Immunol. 1979 Oct;47(2):312–322. doi: 10.1016/0008-8749(79)90341-1. [DOI] [PubMed] [Google Scholar]
  23. McNeil H. P., Austen K. F., Somerville L. L., Gurish M. F., Stevens R. L. Molecular cloning of the mouse mast cell protease-5 gene. A novel secretory granule protease expressed early in the differentiation of serosal mast cells. J Biol Chem. 1991 Oct 25;266(30):20316–20322. [PubMed] [Google Scholar]
  24. McNeil H. P., Frenkel D. P., Austen K. F., Friend D. S., Stevens R. L. Translation and granule localization of mouse mast cell protease-5. Immunodetection with specific antipeptide Ig. J Immunol. 1992 Oct 1;149(7):2466–2472. [PubMed] [Google Scholar]
  25. Miller H. R., Huntley J. F., Newlands G. F., Mackellar A., Lammas D. A., Wakelin D. Granule proteinases define mast cell heterogeneity in the serosa and the gastrointestinal mucosa of the mouse. Immunology. 1988 Dec;65(4):559–566. [PMC free article] [PubMed] [Google Scholar]
  26. Miller H. R., Jarrett W. F. Immune reactions in mucous membranes. I. Intestinal mast cell response during helminth expulsion in the rat. Immunology. 1971 Mar;20(3):277–288. [PMC free article] [PubMed] [Google Scholar]
  27. Newlands G. F., Gibson S., Knox D. P., Grencis R., Wakelin D., Miller H. R. Characterization and mast cell origin of a chymotrypsin-like proteinase isolated from intestines of mice infected with Trichinella spiralis. Immunology. 1987 Dec;62(4):629–634. [PMC free article] [PubMed] [Google Scholar]
  28. Reynolds D. S., Stevens R. L., Lane W. S., Carr M. H., Austen K. F., Serafin W. E. Different mouse mast cell populations express various combinations of at least six distinct mast cell serine proteases. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3230–3234. doi: 10.1073/pnas.87.8.3230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ruitenberg E. J., Elgersma A. Absence of intestinal mast cell response in congenitally athymic mice during Trichinella spiralis infection. Nature. 1976 Nov 18;264(5583):258–260. doi: 10.1038/264258a0. [DOI] [PubMed] [Google Scholar]
  30. Ruitenberg E. J., Elgersma A., Kruizinga W. Intestinal mast cells and globule leucocytes: role of the thymus on their presence and proliferation during a Trichinella spiralis infection in the rat. Int Arch Allergy Appl Immunol. 1979;60(3):302–309. doi: 10.1159/000232355. [DOI] [PubMed] [Google Scholar]
  31. Sali A., Matsumoto R., McNeil H. P., Karplus M., Stevens R. L. Three-dimensional models of four mouse mast cell chymases. Identification of proteoglycan binding regions and protease-specific antigenic epitopes. J Biol Chem. 1993 Apr 25;268(12):9023–9034. [PubMed] [Google Scholar]
  32. Serafin W. E., Reynolds D. S., Rogelj S., Lane W. S., Conder G. A., Johnson S. S., Austen K. F., Stevens R. L. Identification and molecular cloning of a novel mouse mucosal mast cell serine protease. J Biol Chem. 1990 Jan 5;265(1):423–429. [PubMed] [Google Scholar]
  33. Serafin W. E., Sullivan T. P., Conder G. A., Ebrahimi A., Marcham P., Johnson S. S., Austen K. F., Reynolds D. S. Cloning of the cDNA and gene for mouse mast cell protease 4. Demonstration of its late transcription in mast cell subclasses and analysis of its homology to subclass-specific neutral proteases of the mouse and rat. J Biol Chem. 1991 Jan 25;266(3):1934–1941. [PubMed] [Google Scholar]
  34. Stevens R. L., Lee T. D., Seldin D. C., Austen K. F., Befus A. D., Bienenstock J. Intestinal mucosal mast cells from rats infected with Nippostrongylus brasiliensis contain protease-resistant chondroitin sulfate di-B proteoglycans. J Immunol. 1986 Jul 1;137(1):291–295. [PubMed] [Google Scholar]
  35. Trong H. L., Newlands G. F., Miller H. R., Charbonneau H., Neurath H., Woodbury R. G. Amino acid sequence of a mouse mucosal mast cell protease. Biochemistry. 1989 Jan 10;28(1):391–395. doi: 10.1021/bi00427a054. [DOI] [PubMed] [Google Scholar]
  36. WELLS P. D. Mast cell, eosinophil and histamine levels in Nippostrongylus brasiliensis infected rats. Exp Parasitol. 1962 Apr;12:82–101. doi: 10.1016/s0014-4894(62)80002-2. [DOI] [PubMed] [Google Scholar]
  37. Xia Z., Ghildyal N., Austen K. F., Stevens R. L. Post-transcriptional regulation of chymase expression in mast cells. A cytokine-dependent mechanism for controlling the expression of granule neutral proteases of hematopoietic cells. J Biol Chem. 1996 Apr 12;271(15):8747–8753. doi: 10.1074/jbc.271.15.8747. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES