Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1996 Oct 2;135(2):303–314. doi: 10.1083/jcb.135.2.303

Spliced exons of adenovirus late RNAs colocalize with snRNP in a specific nuclear domain

PMCID: PMC2121036  PMID: 8896590

Abstract

Posttranscriptional steps in the production of mRNA include well characterized polyadenylation and splicing reactions, but it is also necessary to understand how RNA is transported within the nucleus from the site of its transcription to the nuclear pore, where it is translocated to the cytoplasmic compartment. Determining the localization of RNA within the nucleus is an important aspect of understanding RNA production and may provide clues for investigating the trafficking of RNA within the nucleus and the mechanism for its export to the cytoplasm. We have previously shown that late phase adenovirus-infected cells contain large clusters of snRNP and non-snRNP splicing factors; the presence of these structures is correlated with high levels of viral late gene transcription. The snRNP clusters correspond to enlarged interchromatin granules present in late phase infected cells. Here we show that polyadenylated RNA and spliced tripartite leader exons from the viral major late transcription unit are present in these same late phase snRNP-containing structures. We find that the majority of the steady state viral RNA present in the nucleus is spliced at the tripartite leader exons. Tripartite leader exons are efficiently exported from the nucleus at a time when we detect their accumulation in interchromatin granule clusters. Since the enlarged interchromatin granules contain spliced and polyadenylated RNA, we suggest that viral RNA may accumulate in this late phase structure during an intranuclear step in RNA transport.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baurén G., Jiang W. Q., Bernholm K., Gu F., Wieslander L. Demonstration of a dynamic, transcription-dependent organization of pre-mRNA splicing factors in polytene nuclei. J Cell Biol. 1996 Jun;133(5):929–941. doi: 10.1083/jcb.133.5.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berget S. M., Sharp P. A. Structure of late adenovirus 2 heterogeneous nuclear RNA. J Mol Biol. 1979 Apr 25;129(4):547–565. doi: 10.1016/0022-2836(79)90468-6. [DOI] [PubMed] [Google Scholar]
  3. Besse S., Diaz J. J., Pichard E., Kindbeiter K., Madjar J. J., Puvion-Dutilleul F. In situ hybridization and immuno-electron microscope analyses of the Us11 gene of herpes simplex virus type 1 during transient expression. Chromosoma. 1996 Mar;104(6):434–444. doi: 10.1007/BF00352267. [DOI] [PubMed] [Google Scholar]
  4. Besse S., Puvion-Dutilleul F. Intranuclear retention of ribosomal RNAs in response to herpes simplex virus type 1 infection. J Cell Sci. 1996 Jan;109(Pt 1):119–129. doi: 10.1242/jcs.109.1.119. [DOI] [PubMed] [Google Scholar]
  5. Besse S., Vigneron M., Pichard E., Puvion-Dutilleul F. Synthesis and maturation of viral transcripts in herpes simplex virus type 1 infected HeLa cells: the role of interchromatin granules. Gene Expr. 1995;4(3):143–161. [PMC free article] [PubMed] [Google Scholar]
  6. Beyer A. L., Osheim Y. N. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev. 1988 Jun;2(6):754–765. doi: 10.1101/gad.2.6.754. [DOI] [PubMed] [Google Scholar]
  7. Blencowe B. J., Nickerson J. A., Issner R., Penman S., Sharp P. A. Association of nuclear matrix antigens with exon-containing splicing complexes. J Cell Biol. 1994 Nov;127(3):593–607. doi: 10.1083/jcb.127.3.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bridge E., Carmo-Fonseca M., Lamond A., Pettersson U. Nuclear organization of splicing small nuclear ribonucleoproteins in adenovirus-infected cells. J Virol. 1993 Oct;67(10):5792–5802. doi: 10.1128/jvi.67.10.5792-5802.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bridge E., Hemström C., Pettersson U. Differential regulation of adenovirus late transcriptional units by the products of early region. Virology. 1991 Jul;183(1):260–266. doi: 10.1016/0042-6822(91)90138-2. [DOI] [PubMed] [Google Scholar]
  10. Bridge E., Pettersson U. Nuclear organization of replication and gene expression in adenovirus-infected cells. Curr Top Microbiol Immunol. 1995;199(Pt 1):99–117. doi: 10.1007/978-3-642-79496-4_7. [DOI] [PubMed] [Google Scholar]
  11. Bridge E., Xia D. X., Carmo-Fonseca M., Cardinali B., Lamond A. I., Pettersson U. Dynamic organization of splicing factors in adenovirus-infected cells. J Virol. 1995 Jan;69(1):281–290. doi: 10.1128/jvi.69.1.281-290.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Carter K. C., Bowman D., Carrington W., Fogarty K., McNeil J. A., Fay F. S., Lawrence J. B. A three-dimensional view of precursor messenger RNA metabolism within the mammalian nucleus. Science. 1993 Feb 26;259(5099):1330–1335. doi: 10.1126/science.8446902. [DOI] [PubMed] [Google Scholar]
  13. Carter K. C. Spatial localization of pre-mRNA transcription and processing within the nucleus. Curr Opin Biotechnol. 1994 Dec;5(6):579–584. doi: 10.1016/0958-1669(94)90078-7. [DOI] [PubMed] [Google Scholar]
  14. Carter K. C., Taneja K. L., Lawrence J. B. Discrete nuclear domains of poly(A) RNA and their relationship to the functional organization of the nucleus. J Cell Biol. 1991 Dec;115(5):1191–1202. doi: 10.1083/jcb.115.5.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cutt J. R., Shenk T., Hearing P. Analysis of adenovirus early region 4-encoded polypeptides synthesized in productively infected cells. J Virol. 1987 Feb;61(2):543–552. doi: 10.1128/jvi.61.2.543-552.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fakan S. Perichromatin fibrils are in situ forms of nascent transcripts. Trends Cell Biol. 1994 Mar;4(3):86–90. doi: 10.1016/0962-8924(94)90180-5. [DOI] [PubMed] [Google Scholar]
  17. Flint S. J. Regulation of adenovirus mRNA formation. Adv Virus Res. 1986;31:169–228. doi: 10.1016/s0065-3527(08)60264-x. [DOI] [PubMed] [Google Scholar]
  18. Gerace L. Nuclear export signals and the fast track to the cytoplasm. Cell. 1995 Aug 11;82(3):341–344. doi: 10.1016/0092-8674(95)90420-4. [DOI] [PubMed] [Google Scholar]
  19. Huang S., Deerinck T. J., Ellisman M. H., Spector D. L. In vivo analysis of the stability and transport of nuclear poly(A)+ RNA. J Cell Biol. 1994 Aug;126(4):877–899. doi: 10.1083/jcb.126.4.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Huang S., Spector D. L. Intron-dependent recruitment of pre-mRNA splicing factors to sites of transcription. J Cell Biol. 1996 May;133(4):719–732. doi: 10.1083/jcb.133.4.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Izaurralde E., Mattaj I. W. RNA export. Cell. 1995 Apr 21;81(2):153–159. doi: 10.1016/0092-8674(95)90323-2. [DOI] [PubMed] [Google Scholar]
  22. Lamond A. I., Carmo-Fonseca M. Localisation of splicing snRNPs in mammalian cells. Mol Biol Rep. 1993 Aug;18(2):127–133. doi: 10.1007/BF00986767. [DOI] [PubMed] [Google Scholar]
  23. Leppard K. N., Shenk T. The adenovirus E1B 55 kd protein influences mRNA transport via an intranuclear effect on RNA metabolism. EMBO J. 1989 Aug;8(8):2329–2336. doi: 10.1002/j.1460-2075.1989.tb08360.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lerner E. A., Lerner M. R., Janeway C. A., Jr, Steitz J. A. Monoclonal antibodies to nucleic acid-containing cellular constituents: probes for molecular biology and autoimmune disease. Proc Natl Acad Sci U S A. 1981 May;78(5):2737–2741. doi: 10.1073/pnas.78.5.2737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Manley J. L., Sharp P. A., Gefter M. L. RNA synthesis in isolated nuclei: identification and comparison of adenovirus 2 encoded transcripts synthesized in vitro and vivo. J Mol Biol. 1979 Nov 25;135(1):171–197. doi: 10.1016/0022-2836(79)90346-2. [DOI] [PubMed] [Google Scholar]
  26. Nevins J. R., Darnell J. E., Jr Steps in the processing of Ad2 mRNA: poly(A)+ nuclear sequences are conserved and poly(A) addition precedes splicing. Cell. 1978 Dec;15(4):1477–1493. doi: 10.1016/0092-8674(78)90071-5. [DOI] [PubMed] [Google Scholar]
  27. Nordqvist K., Akusjärvi G. Adenovirus early region 4 stimulates mRNA accumulation via 5' introns. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9543–9547. doi: 10.1073/pnas.87.24.9543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. PHILIPSON L. Adenovirus assay by the fluorescent cell-counting procedure. Virology. 1961 Nov;15:263–268. doi: 10.1016/0042-6822(61)90357-9. [DOI] [PubMed] [Google Scholar]
  29. Pilder S., Moore M., Logan J., Shenk T. The adenovirus E1B-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs. Mol Cell Biol. 1986 Feb;6(2):470–476. doi: 10.1128/mcb.6.2.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pombo A., Ferreira J., Bridge E., Carmo-Fonseca M. Adenovirus replication and transcription sites are spatially separated in the nucleus of infected cells. EMBO J. 1994 Nov 1;13(21):5075–5085. doi: 10.1002/j.1460-2075.1994.tb06837.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Puvion-Dutilleul F., Bachellerie J. P., Visa N., Puvion E. Rearrangements of intranuclear structures involved in RNA processing in response to adenovirus infection. J Cell Sci. 1994 Jun;107(Pt 6):1457–1468. doi: 10.1242/jcs.107.6.1457. [DOI] [PubMed] [Google Scholar]
  32. Puvion-Dutilleul F., Puvion E. Sites of transcription of adenovirus type 5 genomes in relation to early viral DNA replication in infected HeLa cells. A high resolution in situ hybridization and autoradiographical study. Biol Cell. 1991;71(1-2):135–147. doi: 10.1016/0248-4900(91)90060-z. [DOI] [PubMed] [Google Scholar]
  33. Sarnow P., Hearing P., Anderson C. W., Halbert D. N., Shenk T., Levine A. J. Adenovirus early region 1B 58,000-dalton tumor antigen is physically associated with an early region 4 25,000-dalton protein in productively infected cells. J Virol. 1984 Mar;49(3):692–700. doi: 10.1128/jvi.49.3.692-700.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Scheer U., Thiry M., Goessens G. Structure, function and assembly of the nucleolus. Trends Cell Biol. 1993 Jul;3(7):236–241. doi: 10.1016/0962-8924(93)90123-i. [DOI] [PubMed] [Google Scholar]
  35. Smiley J. K., Young M. A., Bansbach C. C., Flint S. J. The metabolism of small cellular RNA species during productive subgroup C adenovirus infection. Virology. 1995 Jan 10;206(1):100–107. doi: 10.1016/s0042-6822(95)80024-7. [DOI] [PubMed] [Google Scholar]
  36. Visa N., Puvion-Dutilleul F., Harper F., Bachellerie J. P., Puvion E. Intranuclear distribution of poly(A) RNA determined by electron microscope in situ hybridization. Exp Cell Res. 1993 Sep;208(1):19–34. doi: 10.1006/excr.1993.1218. [DOI] [PubMed] [Google Scholar]
  37. Wansink D. G., van Driel R., de Jong L. Organization of (pre-)mRNA metabolism in the cell nucleus. Mol Biol Rep. 1994;20(2):45–55. doi: 10.1007/BF00996353. [DOI] [PubMed] [Google Scholar]
  38. Xing Y., Johnson C. V., Moen P. T., Jr, McNeil J. A., Lawrence J. Nonrandom gene organization: structural arrangements of specific pre-mRNA transcription and splicing with SC-35 domains. J Cell Biol. 1995 Dec;131(6 Pt 2):1635–1647. doi: 10.1083/jcb.131.6.1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zhang G., Taneja K. L., Singer R. H., Green M. R. Localization of pre-mRNA splicing in mammalian nuclei. Nature. 1994 Dec 22;372(6508):809–812. doi: 10.1038/372809a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES